Алгоритм Диница: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) (Новая страница: « #include <stdio.h> #include <algorithm> #include <vector> #include <queue> using namespace std; struct Edge { int a, b, cap, flow; Edge(int a, i…») |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
class Graph { | |||
struct Edge { | |||
int a, b, capacity, flow = 0; | |||
Edge(int a, int b, int capacity) : | |||
a(a), b(b), capacity(capacity) {} | |||
int other(int v) const { | |||
return v == a ? b : a; | |||
} | |||
int capacityTo(int v) const { | |||
return v == b ? capacity - flow : flow; | |||
} | |||
void addFlowTo(int v, int deltaFlow) { | |||
flow += (v == b ? deltaFlow : -deltaFlow); | |||
vector<Edge> edges; | } | ||
}; | |||
vector<Edge> edges; | |||
vector<vector<int>> graph; | |||
vector<int> dist, edgeTo, index; | |||
bool bfs(int start, int finish) { | |||
dist.assign(graph.size(), 1e9); | |||
queue<int> q; | |||
dist[start] = 0; | |||
q.push(start); | |||
while (!q.empty()) { | |||
int v = q.front(); | |||
q.pop(); | |||
for (int e : graph[v]) { | |||
int to = edges[e].other(v); | |||
if (edges[e].capacityTo(to) && dist[to] > dist[v] + 1) { | |||
dist[to] = dist[v] + 1; | |||
q.push(to); | |||
} | |||
} | } | ||
} | } | ||
return dist[finish] != 1e9; | |||
} | } | ||
bool dfs(int v, int finish) { | |||
if (v == finish) | |||
return 1; | |||
for ( ; index[v] < graph[v].size(); index[v]++) { | |||
int e = graph[v][index[v]], to = edges[e].other(v); | |||
if (edges[e].capacityTo(to) && dist[to] == dist[v] + 1 && dfs(to, finish)) { | |||
edgeTo[to] = e; | |||
return 1; | return 1; | ||
} | |||
} | } | ||
return 0; | |||
} | } | ||
int bottleneckCapacity(int start, int finish) { | |||
int bCapacity = 1e9; | |||
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) | |||
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); | |||
return bCapacity; | |||
} | } | ||
int | void addFlow(int start, int finish, int deltaFlow) { | ||
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) | |||
edges[edgeTo[v]].addFlowTo(v, deltaFlow); | |||
} | |||
public: | |||
Graph(int vertexCount) : | |||
graph(vertexCount), dist(vertexCount), edgeTo(vertexCount), index(vertexCount) {} | |||
void addEdge(int from, int to, int capacity) { | |||
edges.push_back(Edge(from, to, capacity)); | |||
graph[from].push_back(edges.size() - 1); | |||
graph[to].push_back(edges.size() - 1); | |||
} | |||
long long maxFlow(int start, int finish) { | |||
long long flow = 0; | |||
while (bfs(start, finish)) { | |||
index.assign(graph.size(), 0); | |||
while (dfs(start, finish)) { | |||
int deltaFlow = bottleneckCapacity(start, finish); | |||
addFlow(start, finish, deltaFlow); | |||
flow += deltaFlow; | |||
} | |||
} | } | ||
return flow; | |||
} | } | ||
}; | |||
} | |||
== Ссылки == | == Ссылки == | ||
* [http://e-maxx.ru/algo/dinic e-maxx.ru | Теория: | ||
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B0_%D0%94%D0%B8%D0%BD%D0%B8%D1%86%D0%B0 neerc.ifmo.ru/wiki | * [http://e-maxx.ru/algo/dinic e-maxx.ru — Алгоритм Диница нахождения максимального потока] | ||
* [https://cp-algorithms.com/graph/dinic.html cp-algorithms.com — Maximum flow — Dinic's algorithm] | |||
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B0_%D0%94%D0%B8%D0%BD%D0%B8%D1%86%D0%B0 neerc.ifmo.ru/wiki — Схема алгоритма Диница] | |||
* [https://wiki.algocode.ru/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%B8%D0%BD%D0%B8%D1%86%D0%B0 wiki.algocode.ru — Алгоритм Диница] | |||
* [https://codeforces.com/blog/entry/104960 codeforces.com — My way of understanding Dinic's algorithm] | |||
* [https://usaco.guide/adv/max-flow?lang=cpp#dinics-algorithm usaco.guide — Dinic's Algorithm] | |||
Демонстрация: | |||
* [https://visualgo.net/en/maxflow visualgo.net — Network Flow] | |||
Код: | |||
* [https://github.com/indy256/codelibrary/blob/master/cpp/graphs/flows/max_flow_dinic.h indy256/codelibrary/cpp/graphs/flows/max_flow_dinic.h] | |||
* [https://github.com/ADJA/algos/blob/master/Graphs/Dinic.cpp ADJA/algos/Graphs/Dinic.cpp] | |||
Задачи: | |||
* [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru — Курс «Алгоритмы на графах» — часть 9] | * [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru — Курс «Алгоритмы на графах» — часть 9] | ||
[[Category: Максимальный поток]] | [[Category: Максимальный поток]] |
Текущая версия от 00:59, 3 января 2023
class Graph { struct Edge { int a, b, capacity, flow = 0; Edge(int a, int b, int capacity) : a(a), b(b), capacity(capacity) {} int other(int v) const { return v == a ? b : a; } int capacityTo(int v) const { return v == b ? capacity - flow : flow; } void addFlowTo(int v, int deltaFlow) { flow += (v == b ? deltaFlow : -deltaFlow); } }; vector<Edge> edges; vector<vector<int>> graph; vector<int> dist, edgeTo, index; bool bfs(int start, int finish) { dist.assign(graph.size(), 1e9); queue<int> q; dist[start] = 0; q.push(start); while (!q.empty()) { int v = q.front(); q.pop(); for (int e : graph[v]) { int to = edges[e].other(v); if (edges[e].capacityTo(to) && dist[to] > dist[v] + 1) { dist[to] = dist[v] + 1; q.push(to); } } } return dist[finish] != 1e9; } bool dfs(int v, int finish) { if (v == finish) return 1; for ( ; index[v] < graph[v].size(); index[v]++) { int e = graph[v][index[v]], to = edges[e].other(v); if (edges[e].capacityTo(to) && dist[to] == dist[v] + 1 && dfs(to, finish)) { edgeTo[to] = e; return 1; } } return 0; } int bottleneckCapacity(int start, int finish) { int bCapacity = 1e9; for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); return bCapacity; } void addFlow(int start, int finish, int deltaFlow) { for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) edges[edgeTo[v]].addFlowTo(v, deltaFlow); } public: Graph(int vertexCount) : graph(vertexCount), dist(vertexCount), edgeTo(vertexCount), index(vertexCount) {} void addEdge(int from, int to, int capacity) { edges.push_back(Edge(from, to, capacity)); graph[from].push_back(edges.size() - 1); graph[to].push_back(edges.size() - 1); } long long maxFlow(int start, int finish) { long long flow = 0; while (bfs(start, finish)) { index.assign(graph.size(), 0); while (dfs(start, finish)) { int deltaFlow = bottleneckCapacity(start, finish); addFlow(start, finish, deltaFlow); flow += deltaFlow; } } return flow; } };
Ссылки
Теория:
- e-maxx.ru — Алгоритм Диница нахождения максимального потока
- cp-algorithms.com — Maximum flow — Dinic's algorithm
- neerc.ifmo.ru/wiki — Схема алгоритма Диница
- wiki.algocode.ru — Алгоритм Диница
- codeforces.com — My way of understanding Dinic's algorithm
- usaco.guide — Dinic's Algorithm
Демонстрация:
Код:
Задачи: