Мосты. Компоненты рёберной двусвязности: различия между версиями

Материал из Олимпиадное программирование в УлГТУ
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 3: Строка 3:


  struct Graph {
  struct Graph {
     vector<vector<int>> g;
     vector<vector<int>> graph;
     vector<int> visited, depth, upDepth;
     vector<int> visited, depth, upDepth;
     vector<pair<int, int>> bridges;
     vector<pair<int, int>> bridges;
Строка 12: Строка 12:
         upDepth[v] = depth[v];
         upDepth[v] = depth[v];
   
   
         for (int to : g[v]) {
         for (int to : graph[v]) {
             if (to == p) {
             if (to == p) {
                 continue;
                 continue;
Строка 26: Строка 26:
     }
     }
   
   
     Graph(int vertexCount) {
     Graph(int vertexCount) :
         g.resize(vertexCount);
         graph(vertexCount), visited(vertexCount), depth(vertexCount), upDepth(vertexCount) {}
        visited.resize(vertexCount);
        depth.resize(vertexCount);
        upDepth.resize(vertexCount);
    }
   
   
     void addEdge(int a, int b) {
     void addEdge(int a, int b) {
         g[a].push_back(b);
         graph[a].push_back(b);
         g[b].push_back(a);
         graph[b].push_back(a);
     }
     }
   
   
     vector<pair<int, int>> getBridges() {
     vector<pair<int, int>> getBridges() {
         for (int v = 0; v < g.size(); v++)
         for (int v = 0; v < graph.size(); v++)
             if (!visited[v])
             if (!visited[v])
                 dfs(v, -1);
                 dfs(v, -1);

Текущая версия от 12:26, 17 марта 2023

  • Для каждой вершины v будем подсчитывать глубину depth[v] и величину upDepth[v] — минимальную глубину некоторой вершины, достижимой из текущего поддерева переходом по одному обратному ребру.
  • Ребро (vto) является мостом, если из поддерева вершины to в дереве обхода в глубину нет обратных рёбер в вершину v или её предков (upDepth[to] > depth[v]).
struct Graph {
    vector<vector<int>> graph;
    vector<int> visited, depth, upDepth;
    vector<pair<int, int>> bridges;

    void dfs(int v, int p) {
        visited[v] = 1;
        depth[v] = (p == -1 ? 0 : depth[p] + 1);
        upDepth[v] = depth[v];

        for (int to : graph[v]) {
            if (to == p) {
                continue;
            } else if (!visited[to]) {
                dfs(to, v);
                upDepth[v] = min(upDepth[v], upDepth[to]);
                if (upDepth[to] > depth[v])
                    bridges.push_back({ v, to });
            } else {
                upDepth[v] = min(upDepth[v], depth[to]);
            }
        }
    }

    Graph(int vertexCount) :
        graph(vertexCount), visited(vertexCount), depth(vertexCount), upDepth(vertexCount) {}

    void addEdge(int a, int b) {
        graph[a].push_back(b);
        graph[b].push_back(a);
    }

    vector<pair<int, int>> getBridges() {
        for (int v = 0; v < graph.size(); v++)
            if (!visited[v])
                dfs(v, -1);
        return bridges;
    }
};

Ссылки

Теория:

Демонстрация:

Код:

Задачи: