Мосты. Компоненты рёберной двусвязности: различия между версиями

Материал из Олимпиадное программирование в УлГТУ
Перейти к навигации Перейти к поиску
м (Ctrlalt переименовал страницу Мосты и точки сочленения в Мосты. Компоненты рёберной двусвязности без оставления перенаправления)
Нет описания правки
 
(не показано 15 промежуточных версий этого же участника)
Строка 1: Строка 1:
* Для каждой вершины <tt>v</tt> будем подсчитывать глубину <tt>depth[v]</tt> и величину <tt>upDepth[v]</tt> &mdash; минимальную глубину некоторой вершины, достижимой из текущего поддерева переходом по одному обратному ребру.
* Ребро (<tt>v</tt> &mdash; <tt>to</tt>) является мостом, если из поддерева вершины <tt>to</tt> в дереве обхода в глубину нет обратных рёбер в вершину <tt>v</tt> или её предков (<tt>upDepth[to] > depth[v]</tt>).
struct Graph {
    vector<vector<int>> graph;
    vector<int> visited, depth, upDepth;
    vector<pair<int, int>> bridges;
    void dfs(int v, int p) {
        visited[v] = 1;
        depth[v] = (p == -1 ? 0 : depth[p] + 1);
        upDepth[v] = depth[v];
        for (int to : graph[v]) {
            if (to == p) {
                continue;
            } else if (!visited[to]) {
                dfs(to, v);
                upDepth[v] = min(upDepth[v], upDepth[to]);
                if (upDepth[to] > depth[v])
                    bridges.push_back({ v, to });
            } else {
                upDepth[v] = min(upDepth[v], depth[to]);
            }
        }
    }
    Graph(int vertexCount) :
        graph(vertexCount), visited(vertexCount), depth(vertexCount), upDepth(vertexCount) {}
    void addEdge(int a, int b) {
        graph[a].push_back(b);
        graph[b].push_back(a);
    }
    vector<pair<int, int>> getBridges() {
        for (int v = 0; v < graph.size(); v++)
            if (!visited[v])
                dfs(v, -1);
        return bridges;
    }
};
== Ссылки ==
== Ссылки ==
* [http://e-maxx.ru/algo/bridge_searching e-maxx.ru &mdash; Поиск мостов]
Теория:
* [http://e-maxx.ru/algo/cutpoints e-maxx.ru &mdash; Поиск точек сочленения]
:* [http://e-maxx.ru/algo/bridge_searching e-maxx.ru &mdash; Поиск мостов]
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%85%D0%BE%D0%B4%D0%B0_%D0%B2_%D0%B3%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D1%83_%D0%B4%D0%BB%D1%8F_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0_%D0%BC%D0%BE%D1%81%D1%82%D0%BE%D0%B2 neerc.ifmo.ru/wiki &mdash; Использование обхода в глубину для поиска мостов]
:* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%85%D0%BE%D0%B4%D0%B0_%D0%B2_%D0%B3%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D1%83_%D0%B4%D0%BB%D1%8F_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0_%D0%BC%D0%BE%D1%81%D1%82%D0%BE%D0%B2 neerc.ifmo.ru/wiki &mdash; Использование обхода в глубину для поиска мостов]
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%85%D0%BE%D0%B4%D0%B0_%D0%B2_%D0%B3%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D1%83_%D0%B4%D0%BB%D1%8F_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0_%D1%82%D0%BE%D1%87%D0%B5%D0%BA_%D1%81%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F neerc.ifmo.ru/wiki &mdash; Использование обхода в глубину для поиска точек сочленения]
:* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9F%D0%BE%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82_%D1%80%D0%B5%D0%B1%D0%B5%D1%80%D0%BD%D0%BE%D0%B9_%D0%B4%D0%B2%D1%83%D1%81%D0%B2%D1%8F%D0%B7%D0%BD%D0%BE%D1%81%D1%82%D0%B8 neerc.ifmo.ru/wiki &mdash; Построение компонент реберной двусвязности]
* [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru &mdash; Курс &laquo;Алгоритмы на графах&raquo; &mdash; часть 2]
:* [http://algorithmica.org/tg/bridges algorithmica.org — Мосты и точки сочленения]
* [http://informatics.mccme.ru/file.php/97/lakhno_dfs.pdf Лахно А. П. Поиск в глубину и его применение]
:* [https://notes.algoprog.ru/dfs/04_4_bridges.html Калинин П. Мосты и точки сочленения]
* [http://github.com/indy256/codelibrary/blob/master/java/src/BiconnectedComponents.java CodeLibrary &mdash; Biconnected components, bridges and cut points]
:* [https://ejudge.lksh.ru/archive/2014/07/Cprime/stuff/Dfs.pdf Лахно А. Поиск в глубину и его применение]
* [http://github.com/ADJA/algos/blob/master/Graphs/BridgesSearch.cpp Algos &mdash; Algorithm for finding all bridges in the graph]
Демонстрация:
* [http://github.com/ADJA/algos/blob/master/Graphs/CutpointsSearch.cpp Algos &mdash; Algorithm for finding all cutpoints in the graph]
:* [https://visualgo.net/en/dfsbfs VisuAlgo &mdash; Graph Traversal]
Код:
:* [https://github.com/indy256/codelibrary/blob/master/java/graphs/dfs/Biconnectivity.java codelibrary/java/graphs/dfs/Biconnectivity.java]
:* [http://github.com/ADJA/algos/blob/master/Graphs/BridgesSearch.cpp algos/Graphs/BridgesSearch.cpp]
 
Задачи:
:* [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru &mdash; Курс &laquo;Алгоритмы на графах&raquo; &mdash; часть 2]
:* [http://codeforces.ru/gym/100070/problem/E Codeforces #100070.E &mdash; Неизбежность]
 


[[Category:Поиск в глубину и его приложения]]
[[Category:Поиск в глубину и его приложения]]

Текущая версия от 12:26, 17 марта 2023

  • Для каждой вершины v будем подсчитывать глубину depth[v] и величину upDepth[v] — минимальную глубину некоторой вершины, достижимой из текущего поддерева переходом по одному обратному ребру.
  • Ребро (vto) является мостом, если из поддерева вершины to в дереве обхода в глубину нет обратных рёбер в вершину v или её предков (upDepth[to] > depth[v]).
struct Graph {
    vector<vector<int>> graph;
    vector<int> visited, depth, upDepth;
    vector<pair<int, int>> bridges;

    void dfs(int v, int p) {
        visited[v] = 1;
        depth[v] = (p == -1 ? 0 : depth[p] + 1);
        upDepth[v] = depth[v];

        for (int to : graph[v]) {
            if (to == p) {
                continue;
            } else if (!visited[to]) {
                dfs(to, v);
                upDepth[v] = min(upDepth[v], upDepth[to]);
                if (upDepth[to] > depth[v])
                    bridges.push_back({ v, to });
            } else {
                upDepth[v] = min(upDepth[v], depth[to]);
            }
        }
    }

    Graph(int vertexCount) :
        graph(vertexCount), visited(vertexCount), depth(vertexCount), upDepth(vertexCount) {}

    void addEdge(int a, int b) {
        graph[a].push_back(b);
        graph[b].push_back(a);
    }

    vector<pair<int, int>> getBridges() {
        for (int v = 0; v < graph.size(); v++)
            if (!visited[v])
                dfs(v, -1);
        return bridges;
    }
};

Ссылки

Теория:

Демонстрация:

Код:

Задачи: