Геометрические примитивы: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) (Новая страница: « #include <stdio.h> #include <math.h> #include <vector> #include <algorithm> using namespace std; const double EPS = 1e-9; struct Point { double x,…») |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
Строка 6: | Строка 6: | ||
const double EPS = 1e-9; | const double EPS = 1e-9; | ||
struct Point { | struct Point { | ||
double x, y; | double x, y; | ||
Point() {} | Point() {} | ||
Point(double x, double y) : x(x), y(y) {} | Point(double x, double y) : x(x), y(y) {} | ||
Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {} | Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {} | ||
double angle() const { | |||
double a = atan2(y, x); | |||
if (a < -EPS) | |||
a += 2 * acos(-1.0); | |||
return a; | |||
} | |||
double length() const { | double length() const { | ||
return sqrt(x * x + y * y); | return sqrt(x * x + y * y); | ||
} | } | ||
Point | double distanceTo(const Point &that) const { | ||
return Point(*this, that).length(); | |||
return Point( | |||
} | } | ||
Point operator + (const Point &that) const { | Point operator + (const Point &that) const { | ||
return Point(x + that.x, y + that.y); | return Point(x + that.x, y + that.y); | ||
Строка 26: | Строка 35: | ||
} | } | ||
Point operator * (double k) const { | Point operator * (double k) const { | ||
return Point(x * k, y * k); | |||
} | |||
Point setLength(double newLength) const { | |||
double k = newLength / length(); | |||
return Point(x * k, y * k); | return Point(x * k, y * k); | ||
} | } | ||
double dotProduct(const Point &that) const { | double dotProduct(const Point &that) const { | ||
return x * that.x + y * that.y; | return x * that.x + y * that.y; | ||
} | } | ||
double angleTo(const Point &that) const { | double angleTo(const Point &that) const { | ||
return acos(dotProduct(that) / (length() * that.length())); | return acos(dotProduct(that) / (length() * that.length())); | ||
} | } | ||
bool isOrthogonalTo(const Point &that) const { | bool isOrthogonalTo(const Point &that) const { | ||
return fabs(dotProduct(that)) < EPS; | return fabs(dotProduct(that)) < EPS; | ||
} | |||
Point orthogonalPoint() const { | |||
return Point(-y, x); | |||
} | |||
double crossProduct(const Point &that) const { | |||
return x * that.y - y * that.x; | |||
} | } | ||
bool isCollinearTo(const Point &that) const { | bool isCollinearTo(const Point &that) const { | ||
return fabs(crossProduct(that)) < EPS; | return fabs(crossProduct(that)) < EPS; | ||
} | } | ||
}; | }; | ||
struct Line { | struct Line { | ||
double a, b, c; | double a, b, c; | ||
Line() {} | Line() {} | ||
Line(double a, double b, double c) : a(a), b(b), c(c) {} | Line(double a, double b, double c) : a(a), b(b), c(c) {} | ||
Line(const Point &p1, const Point &p2) : a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | Line(const Point &p1, const Point &p2) : a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | ||
static Line LineByVector(const Point &p, const Point &v) { | |||
return Line(p, p + v); | |||
} | |||
static Line LineByNormal(const Point &p, const Point &n) { | static Line LineByNormal(const Point &p, const Point &n) { | ||
return | return LineByVector(p, n.orthogonalPoint()); | ||
} | } | ||
Point normal() const { | Point normal() const { | ||
return Point(a, b); | return Point(a, b); | ||
} | } | ||
Line orthogonalLine(const Point &p) const { | Line orthogonalLine(const Point &p) const { | ||
return | return LineByVector(p, normal()); | ||
} | } | ||
Line parallelLine(const Point &p) const { | Line parallelLine(const Point &p) const { | ||
Строка 75: | Строка 90: | ||
return LineByNormal(p, normal()); | return LineByNormal(p, normal()); | ||
} | } | ||
int side(const Point &p) const { | int side(const Point &p) const { | ||
double r = a * p.x + b * p.y + c; | double r = a * p.x + b * p.y + c; | ||
Строка 85: | Строка 101: | ||
return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); | return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); | ||
} | } | ||
bool has(const Point &p) const { | |||
return distanceTo(p) < EPS; | |||
} | |||
double distanceTo(const Line &that) const { | double distanceTo(const Line &that) const { | ||
if (normal().isCollinearTo(that.normal())) { | if (normal().isCollinearTo(that.normal())) { | ||
Строка 91: | Строка 111: | ||
} else | } else | ||
return 0; | return 0; | ||
} | } | ||
bool intersectsWith(const Line &that) const { | bool intersectsWith(const Line &that) const { | ||
Строка 105: | Строка 122: | ||
} | } | ||
}; | }; | ||
struct Ray { | struct Ray { | ||
Point p1, p2; | Point p1, p2; | ||
double a, b, c; | double a, b, c; | ||
Ray(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | Ray(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | ||
double distanceTo(const Point &p) const { | double distanceTo(const Point &p) const { | ||
if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS) | if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS) | ||
Строка 116: | Строка 136: | ||
return p1.distanceTo(p); | return p1.distanceTo(p); | ||
} | } | ||
bool has(const Point &p) const { | |||
return distanceTo(p) < EPS; | |||
} | |||
double distanceTo(const Ray &that) const { | double distanceTo(const Ray &that) const { | ||
Line l(a, b, c), thatL(that.a, that.b, that.c); | Line l(a, b, c), thatL(that.a, that.b, that.c); | ||
Строка 124: | Строка 148: | ||
} | } | ||
return min(distanceTo(that.p1), that.distanceTo(p1)); | return min(distanceTo(that.p1), that.distanceTo(p1)); | ||
} | } | ||
bool intersectsWith(const Ray &that) const { | bool intersectsWith(const Ray &that) const { | ||
Строка 132: | Строка 153: | ||
} | } | ||
}; | }; | ||
struct Segment { | struct Segment { | ||
Point p1, p2; | Point p1, p2; | ||
double a, b, c; | double a, b, c; | ||
Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} | ||
double distanceTo(const Point &p) const { | double distanceTo(const Point &p) const { | ||
if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS && Point(p2, p).dotProduct(Point(p2, p1)) >= -EPS) | if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS && Point(p2, p).dotProduct(Point(p2, p1)) >= -EPS) | ||
Строка 143: | Строка 167: | ||
return min(p1.distanceTo(p), p2.distanceTo(p)); | return min(p1.distanceTo(p), p2.distanceTo(p)); | ||
} | } | ||
bool has(const Point &p) const { | |||
return distanceTo(p) < EPS; | |||
} | |||
double distanceTo(const Segment &that) const { | double distanceTo(const Segment &that) const { | ||
Line l(a, b, c), thatL(that.a, that.b, that.c); | Line l(a, b, c), thatL(that.a, that.b, that.c); | ||
Строка 151: | Строка 179: | ||
} | } | ||
return min(min(distanceTo(that.p1), distanceTo(that.p2)), min(that.distanceTo(p1), that.distanceTo(p2))); | return min(min(distanceTo(that.p1), distanceTo(that.p2)), min(that.distanceTo(p1), that.distanceTo(p2))); | ||
} | } | ||
bool intersectsWith(const Segment &that) const { | bool intersectsWith(const Segment &that) const { | ||
return distanceTo(that) < EPS; | return distanceTo(that) < EPS; | ||
} | } | ||
}; | }; | ||
struct Polygon { | struct Polygon { |
Версия от 00:17, 1 июня 2017
#include <stdio.h> #include <math.h> #include <vector> #include <algorithm> using namespace std; const double EPS = 1e-9; struct Point { double x, y; Point() {} Point(double x, double y) : x(x), y(y) {} Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {} double angle() const { double a = atan2(y, x); if (a < -EPS) a += 2 * acos(-1.0); return a; } double length() const { return sqrt(x * x + y * y); } double distanceTo(const Point &that) const { return Point(*this, that).length(); } Point operator + (const Point &that) const { return Point(x + that.x, y + that.y); } Point operator - (const Point &that) const { return Point(x - that.x, y - that.y); } Point operator * (double k) const { return Point(x * k, y * k); } Point setLength(double newLength) const { double k = newLength / length(); return Point(x * k, y * k); } double dotProduct(const Point &that) const { return x * that.x + y * that.y; } double angleTo(const Point &that) const { return acos(dotProduct(that) / (length() * that.length())); } bool isOrthogonalTo(const Point &that) const { return fabs(dotProduct(that)) < EPS; } Point orthogonalPoint() const { return Point(-y, x); } double crossProduct(const Point &that) const { return x * that.y - y * that.x; } bool isCollinearTo(const Point &that) const { return fabs(crossProduct(that)) < EPS; } }; struct Line { double a, b, c; Line() {} Line(double a, double b, double c) : a(a), b(b), c(c) {} Line(const Point &p1, const Point &p2) : a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} static Line LineByVector(const Point &p, const Point &v) { return Line(p, p + v); } static Line LineByNormal(const Point &p, const Point &n) { return LineByVector(p, n.orthogonalPoint()); } Point normal() const { return Point(a, b); } Line orthogonalLine(const Point &p) const { return LineByVector(p, normal()); } Line parallelLine(const Point &p) const { return LineByNormal(p, normal()); } Line parallelLine(double distance) const { Point p = (a ? Point(-c / a, 0) : Point(0, -c / b)) + normal().setLength(distance); return LineByNormal(p, normal()); } int side(const Point &p) const { double r = a * p.x + b * p.y + c; if (fabs(r) < EPS) return 0; else return r > 0 ? 1 : -1; } double distanceTo(const Point &p) const { return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Line &that) const { if (normal().isCollinearTo(that.normal())) { Point p = (a ? Point(-c / a, 0) : Point(0, -c / b)); return that.distanceTo(p); } else return 0; } bool intersectsWith(const Line &that) const { return distanceTo(that) < EPS; } Point intersection(const Line &that) const { double d = a * that.b - b * that.a; double dx = -c * that.b - b * -that.c; double dy = a * -that.c - -c * that.a; return Point(dx / d, dy / d); } }; struct Ray { Point p1, p2; double a, b, c; Ray(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} double distanceTo(const Point &p) const { if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS) return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); else return p1.distanceTo(p); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Ray &that) const { Line l(a, b, c), thatL(that.a, that.b, that.c); if (l.intersectsWith(thatL)) { Point p = l.intersection(thatL); if (has(p) && that.has(p)) return 0; } return min(distanceTo(that.p1), that.distanceTo(p1)); } bool intersectsWith(const Ray &that) const { return distanceTo(that) < EPS; } }; struct Segment { Point p1, p2; double a, b, c; Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} double distanceTo(const Point &p) const { if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS && Point(p2, p).dotProduct(Point(p2, p1)) >= -EPS) return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); else return min(p1.distanceTo(p), p2.distanceTo(p)); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Segment &that) const { Line l(a, b, c), thatL(that.a, that.b, that.c); if (l.intersectsWith(thatL)) { Point p = l.intersection(thatL); if (has(p) && that.has(p)) return 0; } return min(min(distanceTo(that.p1), distanceTo(that.p2)), min(that.distanceTo(p1), that.distanceTo(p2))); } bool intersectsWith(const Segment &that) const { return distanceTo(that) < EPS; } }; struct Polygon { vector<Point> points; void addPoint(const Point &p) { points.push_back(p); } double area() const { double s = 0; for (int i = 1; i < points.size(); i++) s += points[i - 1].crossProduct(points[i]); s += points[points.size() - 1].crossProduct(points[0]); return s; } };
Ссылки
Теория:
Задачи: