Алгоритм Джонсона: различия между версиями

Материал из Олимпиадное программирование в УлГТУ
Перейти к навигации Перейти к поиску
Нет описания правки
Строка 1: Строка 1:
== Идея ==
* Добавим в граф фиктивную вершину s, из которой во все остальные вершины идут рёбра нулевого веса.
* Добавим в граф фиктивную вершину s, из которой во все остальные вершины идут рёбра нулевого веса.
* Запустим алгоритм Форда-Беллмана из вершины s.
* Запустим алгоритм Форда-Беллмана из вершины s.
* Зададим новые веса для всех рёбер: w'(v, to) = w(v, to) + dist[v] - dist[to].
* Зададим новые веса для всех рёбер: w'(v, to) = w(v, to) + fordBellmanDist[v] - fordBellmanDist[to].
* Утверждается, что новые веса неотрицательны, а кратчайшие пути остались теми же; это позволяет запустить из каждой вершины алгоритм Дейкстры.
* Утверждается, что новые веса неотрицательны, а кратчайшие пути остались теми же; это позволяет запустить из каждой вершины алгоритм Дейкстры.
* Восстановим длины кратчайших путей: dist[a][b] = dijkstraDist[a][b] - fordBellmanDist[a] + fordBellmanDist[b].
== Сложность ==
Запуск Форда-Беллмана — O(VE), V запусков Дейкстры — O(V<sup>3</sup>) или O(VElogV).
Если граф разреженный (E ~ V) и используется разреженный вариант Дейкстры, то общая сложность составит O(V<sup>2</sup>logV), что лучше, чем у алгоритма Флойда.


== Ссылки ==
== Ссылки ==

Версия от 08:18, 5 июля 2022

Идея

  • Добавим в граф фиктивную вершину s, из которой во все остальные вершины идут рёбра нулевого веса.
  • Запустим алгоритм Форда-Беллмана из вершины s.
  • Зададим новые веса для всех рёбер: w'(v, to) = w(v, to) + fordBellmanDist[v] - fordBellmanDist[to].
  • Утверждается, что новые веса неотрицательны, а кратчайшие пути остались теми же; это позволяет запустить из каждой вершины алгоритм Дейкстры.
  • Восстановим длины кратчайших путей: dist[a][b] = dijkstraDist[a][b] - fordBellmanDist[a] + fordBellmanDist[b].

Сложность

Запуск Форда-Беллмана — O(VE), V запусков Дейкстры — O(V3) или O(VElogV).

Если граф разреженный (E ~ V) и используется разреженный вариант Дейкстры, то общая сложность составит O(V2logV), что лучше, чем у алгоритма Флойда.

Ссылки