Компоненты сильной связности. Алгоритм Косараю-Шарира: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) (→Ссылки) |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
Строка 36: | Строка 36: | ||
Построение конденсации: | Построение конденсации: | ||
struct Graph { | |||
int vertexCount, sccCount; | |||
map<int, set<int>> g, gr, gc; | |||
set<int> visited; | |||
vector<int> order; | |||
map<int, int> sccIndexOf, sccSize; | |||
Graph(int vertexCount) : vertexCount(vertexCount), sccCount(0) {} | |||
void addEdge(int a, int b) { | |||
g[a].insert(b); | |||
gr[b].insert(a); | |||
} | |||
void dfs1(int v) { | |||
visited.insert(v); | |||
for (int to : g[v]) | |||
if (!visited.count(to)) | |||
dfs1(to); | |||
order.push_back(v); | |||
} | } | ||
void dfs2(int v, int component) { | |||
visited.insert(v); | |||
sccIndexOf[v] = component; | |||
sccSize[component]++; | |||
for (int to : gr[v]) { | |||
if (!visited.count(to)) | |||
dfs2(to, component); | |||
} | |||
} | |||
void condense() { | |||
for (int v = 0; v < vertexCount; v++) | |||
if (!visited.count(v)) | |||
dfs1(v); | |||
reverse(order.begin(), order.end()); | |||
visited.clear(); | |||
for (int v : order) | |||
if (!visited.count(v)) | |||
dfs2(v, sccCount++); | |||
for (int v = 0; v < vertexCount; v++) | |||
for (int to : g[v]) | |||
if (sccIndexOf[v] != sccIndexOf[to]) | |||
gc[sccIndexOf[v]].insert(sccIndexOf[to]); | |||
} | } | ||
}; | |||
== Ссылки == | == Ссылки == |
Версия от 07:16, 8 июля 2021
- Упорядочиваем вершины по убыванию времени выхода (как при топологической сортировке).
- Транспонируем граф.
- Обходим вершины транспонированного графа в порядке убывания времени выхода ("порядке топологической сортировки").
vector<vector<int>> graph(vertexCount), graphR(vertexCount); vector<int> visited(vertexCount); vector<int> order; void dfs1(int v) { visited[v] = 1; for (int to : graph[v]) if (!visited[to]) dfs1(to); order.push_back(v); } void dfs2(int v, int component) { visited[v] = component; for (int to : graphR[v]) if (!visited[to]) dfs2(to, component); } for (int v = 0; v < vertexCount; v++) if (!visited[v]) dfs1(v); reverse(order.begin(), order.end()); fill(visited.begin(), visited.end(), 0); int componentCount = 0; for (int v : order) if (!visited[v]) dfs2(v, ++componentCount);
Построение конденсации:
struct Graph { int vertexCount, sccCount; map<int, set<int>> g, gr, gc; set<int> visited; vector<int> order; map<int, int> sccIndexOf, sccSize; Graph(int vertexCount) : vertexCount(vertexCount), sccCount(0) {} void addEdge(int a, int b) { g[a].insert(b); gr[b].insert(a); } void dfs1(int v) { visited.insert(v); for (int to : g[v]) if (!visited.count(to)) dfs1(to); order.push_back(v); } void dfs2(int v, int component) { visited.insert(v); sccIndexOf[v] = component; sccSize[component]++; for (int to : gr[v]) { if (!visited.count(to)) dfs2(to, component); } } void condense() { for (int v = 0; v < vertexCount; v++) if (!visited.count(v)) dfs1(v); reverse(order.begin(), order.end()); visited.clear(); for (int v : order) if (!visited.count(v)) dfs2(v, sccCount++); for (int v = 0; v < vertexCount; v++) for (int to : g[v]) if (sccIndexOf[v] != sccIndexOf[to]) gc[sccIndexOf[v]].insert(sccIndexOf[to]); } };
Ссылки
Теория:
- e-maxx.ru — Поиск компонент сильной связности, построение конденсации графа
- neerc.ifmo.ru/wiki — Использование обхода в глубину для поиска компонент сильной связности
- algorithmica.org — Продвинутый DFS
- Калинин П. Компоненты сильной связности
- Лахно А. Поиск в глубину и его применение
- algs4.cs.princeton.edu/lectures — 4.2 Directed Graphs
Демонстрация:
Код:
Задачи: