Максимальный поток минимальной стоимости: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) (Новая страница: « #include <stdio.h> #include <algorithm> #include <vector> #include <queue> using namespace std; class Edge { int _a, _b, capacity, flow, cost; publi…») |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
| Строка 1: | Строка 1: | ||
class Edge { | class Edge { | ||
int _a, _b, capacity, flow, cost; | int _a, _b, capacity, flow, cost; | ||
| Строка 33: | Строка 27: | ||
vector<int> distTo; | vector<int> distTo; | ||
vector<int> edgeTo; | vector<int> edgeTo; | ||
static const int INF = 1 << 30; | |||
void fordBellman(int v) { | void fordBellman(int v) { | ||
while (1) { | while (1) { | ||
| Строка 38: | Строка 33: | ||
for (int i = 0; i < edges.size(); i++) { | for (int i = 0; i < edges.size(); i++) { | ||
int a = edges[i].a(), b = edges[i].b(); | int a = edges[i].a(), b = edges[i].b(); | ||
if (edges[i].capacityTo(b) && distTo[b] > distTo[a] + edges[i].costTo(b)) { | if (edges[i].capacityTo(b) && distTo[a] != INF && distTo[b] > distTo[a] + edges[i].costTo(b)) { | ||
distTo[b] = distTo[a] + edges[i].costTo(b); | distTo[b] = distTo[a] + edges[i].costTo(b); | ||
edgeTo[b] = i; | edgeTo[b] = i; | ||
update = 1; | update = 1; | ||
} | } | ||
if (edges[i].capacityTo(a) && distTo[a] > distTo[b] + edges[i].costTo(a)) { | if (edges[i].capacityTo(a) && distTo[b] != INF && distTo[a] > distTo[b] + edges[i].costTo(a)) { | ||
distTo[a] = distTo[b] + edges[i].costTo(a); | distTo[a] = distTo[b] + edges[i].costTo(a); | ||
edgeTo[a] = i; | edgeTo[a] = i; | ||
| Строка 54: | Строка 49: | ||
} | } | ||
bool hasPath(int from, int to) { | bool hasPath(int from, int to) { | ||
fill(distTo.begin(), distTo.end(), | fill(distTo.begin(), distTo.end(), INF); | ||
distTo[from] = 0; | distTo[from] = 0; | ||
fordBellman(from); | fordBellman(from); | ||
return distTo[to] != | return distTo[to] != INF; | ||
} | } | ||
int bottleneckCapacity(int from, int to) { | int bottleneckCapacity(int from, int to) { | ||
int bCapacity = | int bCapacity = INF; | ||
for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) | for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) | ||
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); | bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); | ||
| Строка 91: | Строка 86: | ||
} | } | ||
}; | }; | ||
== Ссылки == | == Ссылки == | ||
Версия от 21:47, 6 августа 2016
class Edge {
int _a, _b, capacity, flow, cost;
public:
Edge(int a, int b, int capacity, int cost) : _a(a), _b(b), capacity(capacity), flow(0), cost(cost) {}
int a() const {
return _a;
}
int b() const {
return _b;
}
int other(int v) const {
return v == _a ? _b : _a;
}
int capacityTo(int v) const {
return v == _b ? capacity - flow : flow;
}
int costTo(int v) const {
return v == _b ? cost : -cost;
}
void addFlowTo(int v, int f) {
flow += (v == _b ? f : -f);
}
};
class Graph {
vector<Edge> edges;
vector<int> distTo;
vector<int> edgeTo;
static const int INF = 1 << 30;
void fordBellman(int v) {
while (1) {
bool update = 0;
for (int i = 0; i < edges.size(); i++) {
int a = edges[i].a(), b = edges[i].b();
if (edges[i].capacityTo(b) && distTo[a] != INF && distTo[b] > distTo[a] + edges[i].costTo(b)) {
distTo[b] = distTo[a] + edges[i].costTo(b);
edgeTo[b] = i;
update = 1;
}
if (edges[i].capacityTo(a) && distTo[b] != INF && distTo[a] > distTo[b] + edges[i].costTo(a)) {
distTo[a] = distTo[b] + edges[i].costTo(a);
edgeTo[a] = i;
update = 1;
}
}
if (!update)
break;
}
}
bool hasPath(int from, int to) {
fill(distTo.begin(), distTo.end(), INF);
distTo[from] = 0;
fordBellman(from);
return distTo[to] != INF;
}
int bottleneckCapacity(int from, int to) {
int bCapacity = INF;
for (int v = to; v != from; v = edges[edgeTo[v]].other(v))
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v));
return bCapacity;
}
long long addFlow(int from, int to, int flow) {
long long deltaCost = 0;
for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) {
edges[edgeTo[v]].addFlowTo(v, flow);
deltaCost += flow * edges[edgeTo[v]].costTo(v);
}
return deltaCost;
}
public:
Graph(int verticesCount) {
distTo.resize(verticesCount);
edgeTo.resize(verticesCount);
}
void addEdge(int from, int to, int capacity, int cost) {
edges.push_back(Edge(from, to, capacity, cost));
}
pair<long long, long long> minCostMaxFlow(int from, int to) {
long long cost = 0, flow = 0;
while (hasPath(from, to)) {
int deltaFlow = bottleneckCapacity(from, to);
cost += addFlow(from, to, deltaFlow);
flow += deltaFlow;
}
return make_pair(cost, flow);
}
};
Ссылки
Теория:
- e-maxx.ru — Поток минимальной стоимости (min-cost-flow). Алгоритм увеличивающих путей
- neerc.ifmo.ru/wiki — Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
Код:
- CodeLibrary — Maximum flow of minimum cost with Bellman–Ford
- CodeLibrary — Maximum flow of minimum cost with potentials for dense graphs
- CodeLibrary — Maximum flow of minimum cost with potentials
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Ford-Bellman algorithm as shortest path search method
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra for dense graphs running in O(N^2))
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra on heap for sparse graphs)
Задачи: