Алгоритм Диница: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) Нет описания правки |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
Строка 6: | Строка 6: | ||
a(a), b(b), capacity(capacity) {} | a(a), b(b), capacity(capacity) {} | ||
int other(int v) { | int other(int v) const { | ||
return v == a ? b : a; | return v == a ? b : a; | ||
} | } | ||
int capacityTo(int v) { | int capacityTo(int v) const { | ||
return v == b ? capacity - flow : flow; | return v == b ? capacity - flow : flow; | ||
} | } |
Текущая версия от 00:59, 3 января 2023
class Graph { struct Edge { int a, b, capacity, flow = 0; Edge(int a, int b, int capacity) : a(a), b(b), capacity(capacity) {} int other(int v) const { return v == a ? b : a; } int capacityTo(int v) const { return v == b ? capacity - flow : flow; } void addFlowTo(int v, int deltaFlow) { flow += (v == b ? deltaFlow : -deltaFlow); } }; vector<Edge> edges; vector<vector<int>> graph; vector<int> dist, edgeTo, index; bool bfs(int start, int finish) { dist.assign(graph.size(), 1e9); queue<int> q; dist[start] = 0; q.push(start); while (!q.empty()) { int v = q.front(); q.pop(); for (int e : graph[v]) { int to = edges[e].other(v); if (edges[e].capacityTo(to) && dist[to] > dist[v] + 1) { dist[to] = dist[v] + 1; q.push(to); } } } return dist[finish] != 1e9; } bool dfs(int v, int finish) { if (v == finish) return 1; for ( ; index[v] < graph[v].size(); index[v]++) { int e = graph[v][index[v]], to = edges[e].other(v); if (edges[e].capacityTo(to) && dist[to] == dist[v] + 1 && dfs(to, finish)) { edgeTo[to] = e; return 1; } } return 0; } int bottleneckCapacity(int start, int finish) { int bCapacity = 1e9; for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); return bCapacity; } void addFlow(int start, int finish, int deltaFlow) { for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) edges[edgeTo[v]].addFlowTo(v, deltaFlow); } public: Graph(int vertexCount) : graph(vertexCount), dist(vertexCount), edgeTo(vertexCount), index(vertexCount) {} void addEdge(int from, int to, int capacity) { edges.push_back(Edge(from, to, capacity)); graph[from].push_back(edges.size() - 1); graph[to].push_back(edges.size() - 1); } long long maxFlow(int start, int finish) { long long flow = 0; while (bfs(start, finish)) { index.assign(graph.size(), 0); while (dfs(start, finish)) { int deltaFlow = bottleneckCapacity(start, finish); addFlow(start, finish, deltaFlow); flow += deltaFlow; } } return flow; } };
Ссылки
Теория:
- e-maxx.ru — Алгоритм Диница нахождения максимального потока
- cp-algorithms.com — Maximum flow — Dinic's algorithm
- neerc.ifmo.ru/wiki — Схема алгоритма Диница
- wiki.algocode.ru — Алгоритм Диница
- codeforces.com — My way of understanding Dinic's algorithm
- usaco.guide — Dinic's Algorithm
Демонстрация:
Код:
Задачи: