Алгоритм Джонсона: различия между версиями

Материал из Олимпиадное программирование в УлГТУ
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
== TLDR ==
<youtube width="300" height="180">8JQ565Rz7d8</youtube>
== Идея ==
== Идея ==
* Запустим алгоритм Форда-Беллмана одновременно из всех вершин (для этого достаточно изначально заполнить массив расстояний нулями).
* Запустим алгоритм Форда-Беллмана одновременно из всех вершин (для этого достаточно изначально заполнить массив расстояний нулями).

Текущая версия от 15:30, 24 мая 2023

TLDR

Идея

  • Запустим алгоритм Форда-Беллмана одновременно из всех вершин (для этого достаточно изначально заполнить массив расстояний нулями).
  • Зададим новые веса для всех рёбер: w'(v, to) = w(v, to) + fordBellmanDist[v] - fordBellmanDist[to].
  • Утверждается, что новые веса неотрицательны, а кратчайшие пути остались теми же; это позволяет запустить из каждой вершины алгоритм Дейкстры.
  • Восстановим длины кратчайших путей: dist[a][b] = dijkstraDist[a][b] - fordBellmanDist[a] + fordBellmanDist[b].

Сложность

Запуск Форда-Беллмана — O(VE), V запусков Дейкстры — O(V3) или O(VElogV).

Если граф разреженный (E ~ V) и используется разреженный вариант Дейкстры, то общая сложность составит O(V2logV), что лучше, чем у алгоритма Флойда.

Ссылки