Максимальный поток минимальной стоимости
Перейти к навигации
Перейти к поиску
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
class Edge {
int _a, _b, capacity, flow, cost;
public:
Edge(int a, int b, int capacity, int cost) : _a(a), _b(b), capacity(capacity), flow(0), cost(cost) {}
int a() const {
return _a;
}
int b() const {
return _b;
}
int other(int v) const {
return v == _a ? _b : _a;
}
int capacityTo(int v) const {
return v == _b ? capacity - flow : flow;
}
int costTo(int v) const {
return v == _b ? cost : -cost;
}
void addFlowTo(int v, int f) {
flow += (v == _b ? f : -f);
}
};
class Graph {
vector<Edge> edges;
vector<int> distTo;
vector<int> edgeTo;
void fordBellman(int v) {
while (1) {
bool update = 0;
for (int i = 0; i < edges.size(); i++) {
int a = edges[i].a(), b = edges[i].b();
if (edges[i].capacityTo(b) && distTo[b] > distTo[a] + edges[i].costTo(b)) {
distTo[b] = distTo[a] + edges[i].costTo(b);
edgeTo[b] = i;
update = 1;
}
if (edges[i].capacityTo(a) && distTo[a] > distTo[b] + edges[i].costTo(a)) {
distTo[a] = distTo[b] + edges[i].costTo(a);
edgeTo[a] = i;
update = 1;
}
}
if (!update)
break;
}
}
bool hasPath(int from, int to) {
fill(distTo.begin(), distTo.end(), 1 << 30);
distTo[from] = 0;
fordBellman(from);
return distTo[to] != 1 << 30;
}
int bottleneckCapacity(int from, int to) {
int bCapacity = 1 << 30;
for (int v = to; v != from; v = edges[edgeTo[v]].other(v))
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v));
return bCapacity;
}
long long addFlow(int from, int to, int flow) {
long long deltaCost = 0;
for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) {
edges[edgeTo[v]].addFlowTo(v, flow);
deltaCost += flow * edges[edgeTo[v]].costTo(v);
}
return deltaCost;
}
public:
Graph(int verticesCount) {
distTo.resize(verticesCount);
edgeTo.resize(verticesCount);
}
void addEdge(int from, int to, int capacity, int cost) {
edges.push_back(Edge(from, to, capacity, cost));
}
pair<long long, long long> minCostMaxFlow(int from, int to) {
long long cost = 0, flow = 0;
while (hasPath(from, to)) {
int deltaFlow = bottleneckCapacity(from, to);
cost += addFlow(from, to, deltaFlow);
flow += deltaFlow;
}
return make_pair(cost, flow);
}
};
int main() {
int n;
scanf("%d", &n);
Graph g(2 * n + 2);
int source = 0;
for (int i = 1; i <= n; i++)
g.addEdge(source, i, 1, 0);
int c;
for (int i = 1; i <= n; i++) {
for (int j = n + 1; j <= 2 * n; j++) {
scanf("%d", &c);
g.addEdge(i, j, 1, c);
}
}
int sink = 2 * n + 1;
for (int i = n + 1; i <= 2 * n; i++)
g.addEdge(i, sink, 1, 0);
printf("%lld", g.minCostMaxFlow(source, sink).first);
}
Ссылки
Теория:
- e-maxx.ru — Поток минимальной стоимости (min-cost-flow). Алгоритм увеличивающих путей
- neerc.ifmo.ru/wiki — Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
Код:
- CodeLibrary — Maximum flow of minimum cost with Bellman–Ford
- CodeLibrary — Maximum flow of minimum cost with potentials for dense graphs
- CodeLibrary — Maximum flow of minimum cost with potentials
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Ford-Bellman algorithm as shortest path search method
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra for dense graphs running in O(N^2))
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra on heap for sparse graphs)
Задачи: