Максимальный поток минимальной стоимости
Перейти к навигации
Перейти к поиску
#include <stdio.h> #include <algorithm> #include <vector> #include <queue> using namespace std; class Edge { int _a, _b, capacity, flow, cost; public: Edge(int a, int b, int capacity, int cost) : _a(a), _b(b), capacity(capacity), flow(0), cost(cost) {} int a() const { return _a; } int b() const { return _b; } int other(int v) const { return v == _a ? _b : _a; } int capacityTo(int v) const { return v == _b ? capacity - flow : flow; } int costTo(int v) const { return v == _b ? cost : -cost; } void addFlowTo(int v, int f) { flow += (v == _b ? f : -f); } }; class Graph { vector<Edge> edges; vector<int> distTo; vector<int> edgeTo; void fordBellman(int v) { while (1) { bool update = 0; for (int i = 0; i < edges.size(); i++) { int a = edges[i].a(), b = edges[i].b(); if (edges[i].capacityTo(b) && distTo[b] > distTo[a] + edges[i].costTo(b)) { distTo[b] = distTo[a] + edges[i].costTo(b); edgeTo[b] = i; update = 1; } if (edges[i].capacityTo(a) && distTo[a] > distTo[b] + edges[i].costTo(a)) { distTo[a] = distTo[b] + edges[i].costTo(a); edgeTo[a] = i; update = 1; } } if (!update) break; } } bool hasPath(int from, int to) { fill(distTo.begin(), distTo.end(), 1 << 30); distTo[from] = 0; fordBellman(from); return distTo[to] != 1 << 30; } int bottleneckCapacity(int from, int to) { int bCapacity = 1 << 30; for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); return bCapacity; } long long addFlow(int from, int to, int flow) { long long deltaCost = 0; for (int v = to; v != from; v = edges[edgeTo[v]].other(v)) { edges[edgeTo[v]].addFlowTo(v, flow); deltaCost += flow * edges[edgeTo[v]].costTo(v); } return deltaCost; } public: Graph(int verticesCount) { distTo.resize(verticesCount); edgeTo.resize(verticesCount); } void addEdge(int from, int to, int capacity, int cost) { edges.push_back(Edge(from, to, capacity, cost)); } pair<long long, long long> minCostMaxFlow(int from, int to) { long long cost = 0, flow = 0; while (hasPath(from, to)) { int deltaFlow = bottleneckCapacity(from, to); cost += addFlow(from, to, deltaFlow); flow += deltaFlow; } return make_pair(cost, flow); } }; int main() { int n; scanf("%d", &n); Graph g(2 * n + 2); int source = 0; for (int i = 1; i <= n; i++) g.addEdge(source, i, 1, 0); int c; for (int i = 1; i <= n; i++) { for (int j = n + 1; j <= 2 * n; j++) { scanf("%d", &c); g.addEdge(i, j, 1, c); } } int sink = 2 * n + 1; for (int i = n + 1; i <= 2 * n; i++) g.addEdge(i, sink, 1, 0); printf("%lld", g.minCostMaxFlow(source, sink).first); }
Ссылки
Теория:
- e-maxx.ru — Поток минимальной стоимости (min-cost-flow). Алгоритм увеличивающих путей
- neerc.ifmo.ru/wiki — Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
Код:
- CodeLibrary — Maximum flow of minimum cost with Bellman–Ford
- CodeLibrary — Maximum flow of minimum cost with potentials for dense graphs
- CodeLibrary — Maximum flow of minimum cost with potentials
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Ford-Bellman algorithm as shortest path search method
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra for dense graphs running in O(N^2))
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra on heap for sparse graphs)
Задачи: