Геометрические примитивы

Материал из Олимпиадное программирование в УлГТУ
Версия от 23:23, 31 мая 2017; Ctrlalt (обсуждение | вклад) (Новая страница: « #include <stdio.h> #include <math.h> #include <vector> #include <algorithm> using namespace std; const double EPS = 1e-9; struct Point { double x,…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
#include <stdio.h>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std;

const double EPS = 1e-9;

struct Point {
    double x, y;
    Point() {}
    Point(double x, double y) : x(x), y(y) {}
    Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {}
    double length() const {
        return sqrt(x * x + y * y);
    }
    Point setLength(double newLength) const {
        double k = newLength / length();
        return Point(x * k, y * k);
    }
    Point operator + (const Point &that) const {
        return Point(x + that.x, y + that.y);
    }
    Point operator - (const Point &that) const {
        return Point(x - that.x, y - that.y);
    }
    Point operator * (double k) const {
        return Point(x * k, y * k);
    }
    double dotProduct(const Point &that) const {
        return x * that.x + y * that.y;
    }
    double crossProduct(const Point &that) const {
        return x * that.y - y * that.x;
    }
    double angle() const {
        double a = atan2(y, x);
        if (a < -EPS)
            a += 2 * acos(-1.0);
        return a;
    }
    double angleTo(const Point &that) const {
        return acos(dotProduct(that) / (length() * that.length()));
    }
    bool isOrthogonalTo(const Point &that) const {
        return fabs(dotProduct(that)) < EPS;
    }
    bool isCollinearTo(const Point &that) const {
        return fabs(crossProduct(that)) < EPS;
    }   
    double distanceTo(const Point &that) const {
        return Point(*this, that).length();
    }
};

struct Line {
    double a, b, c;
    Line() {}
    Line(double a, double b, double c) : a(a), b(b), c(c) {}
    Line(const Point &p1, const Point &p2) : a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {}
    static Line LineByNormal(const Point &p, const Point &n) {
        return Line(n.x, n.y, -p.dotProduct(n));
    }
    Point normal() const {
        return Point(a, b);
    }
    Line orthogonalLine(const Point &p) const {
        return Line(b, -a, a * p.y - b * p.x);
    }   
    Line parallelLine(const Point &p) const {
        return LineByNormal(p, normal());
    }
    Line parallelLine(double distance) const {
        Point p = (a ? Point(-c / a, 0) : Point(0, -c / b)) + normal().setLength(distance);
        return LineByNormal(p, normal());
    }
    int side(const Point &p) const {
        double r = a * p.x + b * p.y + c;
        if (fabs(r) < EPS)
            return 0;
        else
            return r > 0 ? 1 : -1;
    }
    double distanceTo(const Point &p) const {
        return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b);
    }
    double distanceTo(const Line &that) const {
        if (normal().isCollinearTo(that.normal())) {
            Point p = (a ? Point(-c / a, 0) : Point(0, -c / b));
            return that.distanceTo(p);
        } else
            return 0;
    }
    bool has(const Point &p) const {
        return distanceTo(p) < EPS;
    }   
    bool intersectsWith(const Line &that) const {
        return distanceTo(that) < EPS;
    }
    Point intersection(const Line &that) const {
        double d = a * that.b - b * that.a;
        double dx = -c * that.b - b * -that.c;
        double dy = a * -that.c - -c * that.a;
        return Point(dx / d, dy / d);
    }   
};

struct Ray {
    Point p1, p2;
    double a, b, c;
    Ray(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {}
    double distanceTo(const Point &p) const {
        if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS)
            return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b);
        else
            return p1.distanceTo(p);
    }
    double distanceTo(const Ray &that) const {
        Line l(a, b, c), thatL(that.a, that.b, that.c);
        if (l.intersectsWith(thatL)) {
            Point p = l.intersection(thatL);
            if (has(p) && that.has(p))
                return 0;
        }
        return min(distanceTo(that.p1), that.distanceTo(p1));
    }
    bool has(const Point &p) const {
        return distanceTo(p) < EPS;
    }
    bool intersectsWith(const Ray &that) const {
        return distanceTo(that) < EPS;
    }
};

struct Segment {
    Point p1, p2;
    double a, b, c;
    Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {}
    double distanceTo(const Point &p) const {
        if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS && Point(p2, p).dotProduct(Point(p2, p1)) >= -EPS)
            return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b);
        else
            return min(p1.distanceTo(p), p2.distanceTo(p));
    }
    double distanceTo(const Segment &that) const {
        Line l(a, b, c), thatL(that.a, that.b, that.c);
        if (l.intersectsWith(thatL)) {
            Point p = l.intersection(thatL);
            if (has(p) && that.has(p))
                return 0;
        }
        return min(min(distanceTo(that.p1), distanceTo(that.p2)), min(that.distanceTo(p1), that.distanceTo(p2)));
    }
    bool has(const Point &p) const {
        return distanceTo(p) < EPS;
    }
    bool intersectsWith(const Segment &that) const {
        return distanceTo(that) < EPS;
    }
};

struct Polygon {
    vector<Point> points;
    void addPoint(const Point &p) {
        points.push_back(p);
    }
    double area() const {
        double s = 0;
        for (int i = 1; i < points.size(); i++)
            s += points[i - 1].crossProduct(points[i]);
        s += points[points.size() - 1].crossProduct(points[0]);
        return s;
    }
};

Ссылки

Теория:

Задачи: