Мосты. Компоненты рёберной двусвязности
Перейти к навигации
Перейти к поиску
- Для каждой вершины v будем подсчитывать глубину depth[v] и величину upDepth[v] — минимальную глубину некоторой вершины, достижимой из текущего поддерева переходом по одному обратному ребру.
- Ребро (v — to) является мостом, если из поддерева вершины to в дереве обхода в глубину нет обратных рёбер в вершину v или её предков (upDepth[to] > depth[v]).
vector<vector<int>> graph(vertexCount);
vector<bool> visited(vertexCount);
vector<int> depth(vertexCount); // глубина вершины в дереве обхода
vector<int> upDepth(vertexCount); // насколько высоко можно добраться из поддерева вершины, пройдя 1 раз по обратному ребру
void dfs(int v, int parent) {
visited[v] = 1;
depth[v] = (parent == -1 ? 0 : depth[parent] + 1);
upDepth[v] = depth[v];
for (int to : graph[v]) {
if (to == parent) {
continue;
} else if (!visited[to]) {
dfs(to, v);
upDepth[v] = min(upDepth[v], upDepth[to]);
if (upDepth[to] > depth[v])
/* (v, to) - мост */;
} else {
upDepth[v] = min(upDepth[v], depth[to]);
}
}
}
for (int v = 0; v < vertexCount; v++)
if (!visited[v])
dfs(v, -1);
Ссылки
Теория:
Демонстрация:
Код:
Задачи: