Алгоритм Эдмондса-Карпа
Перейти к навигации
Перейти к поиску
class Graph {
struct Edge {
int a, b, capacity, flow;
Edge(int a, int b, int capacity) :
a(a), b(b), capacity(capacity), flow(0) {}
int other(int v) const {
return v == a ? b : a;
}
int capacityTo(int v) const {
return v == b ? capacity - flow : flow;
}
void addFlowTo(int v, int f) {
flow += (v == b ? f : -f);
}
};
vector<Edge> edges;
vector<vector<int>> g;
vector<bool> visited;
vector<int> edgeTo;
void bfs(int v) {
queue<int> q;
visited[v] = 1;
q.push(v);
while (!q.empty()) {
v = q.front();
q.pop();
for (int e : g[v]) {
int to = edges[e].other(v);
if (!visited[to] && edges[e].capacityTo(to)) {
edgeTo[to] = e;
visited[to] = 1;
q.push(to);
}
}
}
}
bool hasPath(int from, int to) {
fill(visited.begin(), visited.end(), 0);
bfs(from);
return visited[to];
}
int bottleneckCapacity(int from, int to) {
int bCapacity = 1e9;
for (int v = to; v != from; v = edges[edgeTo[v]].other(v))
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v));
return bCapacity;
}
void addFlow(int from, int to, int flow) {
for (int v = to; v != from; v = edges[edgeTo[v]].other(v))
edges[edgeTo[v]].addFlowTo(v, flow);
}
public:
Graph(int vertexCount) {
g.resize(vertexCount);
visited.resize(vertexCount);
edgeTo.resize(vertexCount);
}
void addEdge(int from, int to, int capacity) {
edges.push_back(Edge(from, to, capacity));
g[from].push_back(edges.size() - 1);
g[to].push_back(edges.size() - 1);
}
long long maxFlow(int from, int to) {
long long flow = 0;
while (hasPath(from, to)) {
int deltaFlow = bottleneckCapacity(from, to);
addFlow(from, to, deltaFlow);
flow += deltaFlow;
}
return flow;
}
};
Ссылки
Теория:
- algs4.cs.princeton.edu — 6.4 Maximum Flow
- e-maxx.ru — Алгоритм Эдмондса-Карпа нахождения максимального потока за O (NM^2)
- neerc.ifmo.ru/wiki — Алгоритм Эдмондса-Карпа
- Brilliant.org — Edmonds-Karp Algorithm
Демонстрация:
Код:
- CodeLibrary — Maximum flow. Edmonds-Karp algorithm in O(min(E^2 * V, E * FLOW))
- algs4.cs.princeton.edu/code — capacitated edge with flow, capacitated network, maxflow–mincut (несмотря на название, используется алгоритм Эдмондса-Карпа)
Задачи: