Геометрические примитивы
Перейти к навигации
Перейти к поиску
Точка
#include <algorithm> #include <cmath> #include <vector> using namespace std; const double EPS = 1e-9; struct Point { double x, y; Point() {} Point(double x, double y) : x(x), y(y) {} Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {} bool operator == (const Point &that) const { return fabs(x - that.x) < EPS && fabs(y - that.y) < EPS; } bool operator < (const Point &that) const { if (fabs(x - that.x) >= EPS) return x < that.x; return y + EPS < that.y; } double angle() const { double a = atan2(y, x); if (a < -EPS) a += 2 * acos(-1.0); return a; } double length() const { return hypot(x, y); } double distanceTo(const Point &that) const { return hypot(x - that.x, y - that.y); } Point operator + (const Point &that) const { return Point(x + that.x, y + that.y); } Point operator - (const Point &that) const { return Point(x - that.x, y - that.y); } Point operator * (double k) const { return Point(x * k, y * k); } Point setLength(double newLength) const { double k = newLength / length(); return Point(x * k, y * k); } Point rotate(double angle) { return Point(x * cos(angle) - y * sin(angle), y * cos(angle) + x * sin(angle)); } double dotProduct(const Point &that) const { return x * that.x + y * that.y; } double angleTo(const Point &that) const { return acos(max(-1.0, min(1.0, dotProduct(that) / (length() * that.length())))); } bool isOrthogonalTo(const Point &that) const { return fabs(dotProduct(that)) < EPS; } Point orthogonalPoint() const { return Point(-y, x); } double crossProduct(const Point &that) const { return x * that.y - y * that.x; } bool isCollinearTo(const Point &that) const { return fabs(crossProduct(that)) < EPS; } friend istream &operator >> (istream &in, Point &p) { return in >> p.x >> p.y; } friend ostream &operator << (ostream &out, const Point &p) { return out << p.x << " " << p.y; } };
Прямая
struct Line { double a, b, c; Line() {} Line(double a, double b, double c) : a(a), b(b), c(c) {} Line(const Point &p1, const Point &p2) : a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} static Line LineByVector(const Point &p, const Point &v) { return Line(p, p + v); } static Line LineByNormal(const Point &p, const Point &n) { return LineByVector(p, n.orthogonalPoint()); } Point normal() const { return Point(a, b); } Line orthogonalLine(const Point &p) const { return LineByVector(p, normal()); } Line parallelLine(const Point &p) const { return LineByNormal(p, normal()); } Line parallelLine(double distance) const { Point p = (fabs(a) < EPS ? Point(0, -c / b) : Point(-c / a, 0)); Point p1 = p + normal().setLength(distance); return LineByNormal(p1, normal()); } int side(const Point &p) const { double r = a * p.x + b * p.y + c; if (fabs(r) < EPS) return 0; else return r > 0 ? 1 : -1; } double distanceTo(const Point &p) const { return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Line &that) const { if (normal().isCollinearTo(that.normal())) { Point p = (fabs(a) < EPS ? Point(0, -c / b) : Point(-c / a, 0)); return that.distanceTo(p); } else return 0; } bool intersectsWith(const Line &that) const { return distanceTo(that) < EPS; } Point intersection(const Line &that) const { double d = a * that.b - b * that.a; double dx = -c * that.b - b * -that.c; double dy = a * -that.c - -c * that.a; return Point(dx / d, dy / d); } friend istream &operator >> (istream &in, Line &l) { return in >> l.a >> l.b >> l.c; } friend ostream &operator << (ostream &out, const Line &l) { return out << l.a << " " << l.b << " " << l.c; } };
Луч
struct Ray { Point p1, p2; double a, b, c; Ray(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} double distanceTo(const Point &p) const { if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS) return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); else return p1.distanceTo(p); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Ray &that) const { Line l(a, b, c), thatL(that.a, that.b, that.c); if (l.intersectsWith(thatL)) { Point p = l.intersection(thatL); if (has(p) && that.has(p)) return 0; } return min(distanceTo(that.p1), that.distanceTo(p1)); } bool intersectsWith(const Ray &that) const { return distanceTo(that) < EPS; } };
Отрезок
struct Segment { Point p1, p2; double a, b, c; Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2), a(p1.y - p2.y), b(p2.x - p1.x), c(p1.x * p2.y - p2.x * p1.y) {} double distanceTo(const Point &p) const { if (Point(p1, p).dotProduct(Point(p1, p2)) >= -EPS && Point(p2, p).dotProduct(Point(p2, p1)) >= -EPS) return fabs(a * p.x + b * p.y + c) / sqrt(a * a + b * b); else return min(p1.distanceTo(p), p2.distanceTo(p)); } bool has(const Point &p) const { return distanceTo(p) < EPS; } double distanceTo(const Segment &that) const { Line l(a, b, c), thatL(that.a, that.b, that.c); if (l.intersectsWith(thatL)) { Point p = l.intersection(thatL); if (has(p) && that.has(p)) return 0; } return min(min(distanceTo(that.p1), distanceTo(that.p2)), min(that.distanceTo(p1), that.distanceTo(p2))); } bool intersectsWith(const Segment &that) const { return distanceTo(that) < EPS; } };
Многоугольник
struct Polygon { vector<Point> points; void addPoint(const Point &p) { points.push_back(p); } bool has(const Point &p) const { bool pos = 0, neg = 0; for (int i = 0; i < points.size(); i++) { const Point &a = points[i], &b = points[(i + 1) % points.size()]; Point ab(a, b), ap(a, p); double cross = ab.crossProduct(ap); pos |= cross > EPS; neg |= cross < -EPS; } return !pos || !neg; } bool isConvex() { bool pos = 0, neg = 0; for (int i = 0; i < points.size(); i++) { const Point &a = points[i], &b = points[(i + 1) % points.size()], &c = points[(i + 2) % points.size()]; Point ab(a, b), ac(a, c); double cross = ab.crossProduct(ac); pos |= cross > EPS; neg |= cross < -EPS; } return !pos || !neg; } double perimeter() const { double p = 0; for (int i = 0; i < points.size(); i++) p += points[i].distanceTo(points[(i + 1) % points.size()]); return p; } double area() const { double s = 0; for (int i = 0; i < points.size(); i++) s += points[i].crossProduct(points[(i + 1) % points.size()]); return fabs(s) / 2; } };
Точная проверка на пересечение отрезков с целыми координатами
struct Point { long long x, y; Point() {} Point(const Point &a, const Point &b) : x(b.x - a.x), y(b.y - a.y) {} long long crossProduct(const Point &that) const { return x * that.y - y * that.x; } }; struct Segment { Point p1, p2; Segment(const Point &p1, const Point &p2) : p1(p1), p2(p2) {} bool intersectsWith(const Segment &that) const { long long abx1 = min(p1.x, p2.x), abx2 = max(p1.x, p2.x); long long cdx1 = min(that.p1.x, that.p2.x), cdx2 = max(that.p1.x, that.p2.x); if (max(abx1, cdx1) > min(abx2, cdx2)) return 0; long long aby1 = min(p1.y, p2.y), aby2 = max(p1.y, p2.y); long long cdy1 = min(that.p1.y, that.p2.y), cdy2 = max(that.p1.y, that.p2.y); if (max(aby1, cdy1) > min(aby2, cdy2)) return 0; Point ab(p1, p2), ac(p1, that.p1), ad(p1, that.p2); long long abc = ab.crossProduct(ac), abd = ab.crossProduct(ad); if (abc > 0 && abd > 0 || abc < 0 && abd < 0) return 0; Point cd(that.p1, that.p2), ca(that.p1, p1), cb(that.p1, p2); long long cda = cd.crossProduct(ca), cdb = cd.crossProduct(cb); if (cda > 0 && cdb > 0 || cda < 0 && cdb < 0) return 0; return 1; } };
Ссылки
Теория:
- Андреева Е. В., Егоров Ю. Е. Вычислительная геометрия на плоскости / Е. В. Андреева, Ю. Е. Егоров. // Информатика. — 2002. — №39, 40, 43, 44
- Ахмедов М. Geometry, stereometry and spherical geometry
- E-maxx — Проверка двух отрезков на пересечение
Задачи: