Максимальный поток минимальной стоимости
Перейти к навигации
Перейти к поиску
class Graph { struct Edge { int a, b, capacity, flow = 0, cost; Edge(int a, int b, int capacity, int cost) : a(a), b(b), capacity(capacity), cost(cost) {} int other(int v) const { return v == a ? b : a; } int capacityTo(int v) const { return v == b ? capacity - flow : flow; } int costTo(int v) const { return v == b ? cost : -cost; } void addFlowTo(int v, int deltaFlow) { flow += (v == b ? deltaFlow : -deltaFlow); } }; vector<Edge> edges; vector<int> distTo; vector<int> edgeTo; static const int INF = 1e9; void fordBellman(int start) { fill(distTo.begin(), distTo.end(), INF); distTo[start] = 0; while (1) { bool update = 0; for (int i = 0; i < edges.size(); i++) { int a = edges[i].a, b = edges[i].b; if (edges[i].capacityTo(b) && distTo[a] != INF && distTo[b] > distTo[a] + edges[i].costTo(b)) { distTo[b] = distTo[a] + edges[i].costTo(b); edgeTo[b] = i; update = 1; } if (edges[i].capacityTo(a) && distTo[b] != INF && distTo[a] > distTo[b] + edges[i].costTo(a)) { distTo[a] = distTo[b] + edges[i].costTo(a); edgeTo[a] = i; update = 1; } } if (!update) break; } } bool hasPath(int start, int finish) { fordBellman(start); return distTo[finish] != INF; } int bottleneckCapacity(int start, int finish) { int bCapacity = INF; for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); return bCapacity; } long long addFlow(int start, int finish, int deltaFlow) { long long deltaCost = 0; for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) { edges[edgeTo[v]].addFlowTo(v, deltaFlow); deltaCost += deltaFlow * edges[edgeTo[v]].costTo(v); } return deltaCost; } public: Graph(int vertexCount) : distTo(vertexCount), edgeTo(vertexCount) {} void addEdge(int from, int to, int capacity, int cost) { edges.push_back(Edge(from, to, capacity, cost)); } pair<long long, long long> minCostMaxFlow(int start, int finish) { long long cost = 0, flow = 0; while (hasPath(start, finish)) { int deltaFlow = bottleneckCapacity(start, finish); cost += addFlow(start, finish, deltaFlow); flow += deltaFlow; } return { cost, flow }; } };
Ссылки
Теория:
- e-maxx.ru — Поток минимальной стоимости (min-cost-flow). Алгоритм увеличивающих путей
- neerc.ifmo.ru/wiki — Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
Код:
- CodeLibrary — Maximum flow of minimum cost with Bellman–Ford
- CodeLibrary — Maximum flow of minimum cost with potentials for dense graphs
- CodeLibrary — Maximum flow of minimum cost with potentials
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Ford-Bellman algorithm as shortest path search method
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra for dense graphs running in O(N^2))
- Algos — Min Cost Flow (or Min Cost Max Flow) algorithm with Dijkstra algorithm (with potentials) as shortest path search method. (Dijkstra on heap for sparse graphs)
Задачи: