Динамическое программирование: различия между версиями

Материал из Олимпиадное программирование в УлГТУ
Перейти к навигации Перейти к поиску
Нет описания правки
Строка 7: Строка 7:
Вид подзадачи: d[i] — i-ое число Фибоначчи.
Вид подзадачи: d[i] — i-ое число Фибоначчи.


Рекуррентная формула: d[i] = d[i - 1] + d[i - 2]; d[0] = d[1] = 1.
Рекуррентная формула: d[i] = d[i - 1] + d[i - 2].
 
База рекурсии: d[0] = d[1] = 1.


Вид ответа: d[n]. Сложность O(N). (*Данная задача может быть решена за O(logN).)
Вид ответа: d[n]. Сложность O(N). (*Данная задача может быть решена за O(logN).)
Строка 17: Строка 19:
Вид подзадачи: d[j] — максимальная стоимость подмножества предметов, общий вес которых не превосходит j.
Вид подзадачи: d[j] — максимальная стоимость подмножества предметов, общий вес которых не превосходит j.


Рекуррентная формула: Если j <= 0, то d[j] = 0, иначе d[j] = max(d[j - w[i]] + p[i]), где i &isin; 0..(n - 1).
Рекуррентная формула: d[j] = max(d[j - w[i]] + p[i]), где i &isin; 0..(n - 1).
 
База рекурсии: Если j <= 0, то d[j] = 0.


Вид ответа: d[m]. Сложность O(N &times; M).
Вид ответа: d[m]. Сложность O(N &times; M).
Строка 29: Строка 33:
Вид подзадачи: d[i] &mdash; количество путей из клетки 0 в клетку i.
Вид подзадачи: d[i] &mdash; количество путей из клетки 0 в клетку i.


Рекуррентная формула: Если i-ая клетка непроходимая или i < 0, то d[i] = 0, иначе d[i] = d[i - 1] + d[i - 2] + d[i - 3]); d[0] = 1.
Рекуррентная формула: d[i] = d[i - 1] + d[i - 2] + d[i - 3].
 
База рекурсии: d[0] = 1; если i-я клетка непроходимая или i < 0, то d[i] = 0.


Вид ответа: d[n]. Сложность O(N).
Вид ответа: d[n]. Сложность O(N).
Строка 39: Строка 45:
Вид подзадачи: d[i] &mdash; максимальная сумма на пути из клетки 0 в клетку i.
Вид подзадачи: d[i] &mdash; максимальная сумма на пути из клетки 0 в клетку i.


Рекуррентная формула: Если i-ая клетка непроходимая или i < 0, то d[i] = -INF, иначе d[i] = a[i] + max(d[i - 1], d[i - 2], d[i - 3]); d[0] = a[0].
Рекуррентная формула: d[i] = a[i] + max(d[i - 1], d[i - 2], d[i - 3]).
 
База рекурсии: d[0] = a[0]; если i-я клетка непроходимая или i < 0, то d[i] = -INF.


Вид ответа: d[n]. Сложность O(N).
Вид ответа: d[n]. Сложность O(N).
Строка 51: Строка 59:
Вид подзадачи: d[i] &mdash; максимальная сумма на отрезке, заканчивающимся на элементе a[i].
Вид подзадачи: d[i] &mdash; максимальная сумма на отрезке, заканчивающимся на элементе a[i].


Рекуррентная формула: d[i] = max(d[i - 1] + a[i], a[i]); d[0] = a[0].
Рекуррентная формула: d[i] = max(d[i - 1] + a[i], a[i]).
 
База рекурсии: d[0] = a[0].


Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N).
Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N).
Строка 61: Строка 71:
Вид подзадачи: d[i] &mdash; максимальная длина возрастающей подпоследовательности, заканчивающейся на элементе a[i].
Вид подзадачи: d[i] &mdash; максимальная длина возрастающей подпоследовательности, заканчивающейся на элементе a[i].


Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и a[j] < a[i]; d[0] = 1.
Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и a[j] < a[i].
 
База рекурсии: d[0] = 1.


Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N<sup>2</sup>).
Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N<sup>2</sup>).
Строка 71: Строка 83:
Даны размеры N параллелепипедов. Определить максимальное количество параллелепипедов, которые можно последовательно вложить друг в друга (параллелепипеды можно поворачивать, но рёбра должны быть параллельными осям координат).
Даны размеры N параллелепипедов. Определить максимальное количество параллелепипедов, которые можно последовательно вложить друг в друга (параллелепипеды можно поворачивать, но рёбра должны быть параллельными осям координат).


Вид подзадачи: Отсортируем параллелепипеды по неубыванию объёма. d[i] &mdash; максимальное количество вложенных параллелепипедов, где объемлющим является i-ый параллелепипед.
Вид подзадачи: Отсортируем параллелепипеды по неубыванию объёма. d[i] &mdash; максимальное количество вложенных параллелепипедов, где объемлющим является i-й параллелепипед.
 
Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и j-й параллелепипед можно вложить в i-й.


Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и j-ый параллелепипед можно вложить в i-ый; d[0] = 1.
База рекурсии: d[0] = 1.


Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N<sup>2</sup>).
Вид ответа: max(d[i]), где i &isin; 0..(n - 1). Сложность O(N<sup>2</sup>).
Строка 85: Строка 99:
Вид подзадачи: d[i][j] &mdash; максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.
Вид подзадачи: d[i][j] &mdash; максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.


Рекуррентная формула: Если i = 0 или j <= 0, то d[i][j] = 0, иначе d[i][j] = max(d[i - 1][j], d[i - 1][j - w[i - 1]] + p[i - 1]).
Рекуррентная формула: d[i][j] = max(d[i - 1][j], d[i - 1][j - w[i - 1]] + p[i - 1]).
 
База рекурсии: Если i = 0 или j <= 0, то d[i][j] = 0.


Вид ответа: d[n][m]. Сложность O(N &times; M).
Вид ответа: d[n][m]. Сложность O(N &times; M).
Строка 95: Строка 111:
Вид подзадачи: d[i][j] &mdash; максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.
Вид подзадачи: d[i][j] &mdash; максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.


Рекуррентная формула: Если i = 0 или j <= 0, то d[i][j] = 0, иначе d[i][j] = max(d[i - 1][j - k * w[i - 1]] + k * p[i - 1]), где k &isin; 0..k[i].
Рекуррентная формула: d[i][j] = max(d[i - 1][j - k * w[i - 1]] + k * p[i - 1]), где k &isin; 0..k[i].
 
База рекурсии: Если i = 0 или j <= 0, то d[i][j] = 0.


Вид ответа: d[n][m]. Сложность O(N &times; M<sup>2</sup>).
Вид ответа: d[n][m]. Сложность O(N &times; M<sup>2</sup>).
Строка 105: Строка 123:
Вид подзадачи: d[i][j] &mdash; количество способов восстановить подстроку 0..(i - 1), чтобы в ней было j непарных открывающих скобок.
Вид подзадачи: d[i][j] &mdash; количество способов восстановить подстроку 0..(i - 1), чтобы в ней было j непарных открывающих скобок.


Рекуррентная формула: Если j < 0 или j > i, то d[i][j] = 0. Если s[i - 1] =  '(', то d[i][j] = d[i - 1][j - 1]. Если s[i - 1] =  ')', то d[i][j] = d[i - 1][j + 1]. Если s[i - 1] = '?', то d[i][j] = d[i - 1][j - 1] + d[i - 1][j + 1]. d[0][0] = 1.
Рекуррентная формула: Если s[i - 1] =  '(', то d[i][j] = d[i - 1][j - 1]. Если s[i - 1] =  ')', то d[i][j] = d[i - 1][j + 1]. Если s[i - 1] = '?', то d[i][j] = d[i - 1][j - 1] + d[i - 1][j + 1].
 
База рекурсии: d[0][0] = 1; если j < 0 или j > i, то d[i][j] = 0.


Вид ответа: d[n][0]. Сложность O(N<sup>2</sup>).
Вид ответа: d[n][0]. Сложность O(N<sup>2</sup>).
Строка 119: Строка 139:
Вид подзадачи: d[i][j] &mdash; минимальное количество операций, требуемое для перемножения матриц от i до j.
Вид подзадачи: d[i][j] &mdash; минимальное количество операций, требуемое для перемножения матриц от i до j.


Рекуррентная формула: d[i][i] = 0, d[i][j] = min(d[i][k] + d[k + 1][j] + h[i] * w[k] * w[j]), где k &isin; i..(j - 1).
Рекуррентная формула: d[i][j] = min(d[i][k] + d[k + 1][j] + h[i] * w[k] * w[j]), где k &isin; i..(j - 1).
 
База рекурсии: d[i][i] = 0.


Вид ответа: d[0][n - 1]. Сложность O(N<sup>3</sup>).
Вид ответа: d[0][n - 1]. Сложность O(N<sup>3</sup>).
Строка 131: Строка 153:
Вид подзадачи: d[i][j] &mdash; количество способов получить палиндром из подстроки S[i..j].
Вид подзадачи: d[i][j] &mdash; количество способов получить палиндром из подстроки S[i..j].


Рекуррентная формула: d[i][i] = 1. Если i < j, то d[i][j] = 0. Если s[i] != s[j], то d[i][j] = d[i + 1][j] + d[i][j - 1] - d[i + 1][j - 1], иначе d[i][j] = d[i + 1][j] + d[i][j - 1] + 1.  
Рекуррентная формула: Если s[i] != s[j], то d[i][j] = d[i + 1][j] + d[i][j - 1] - d[i + 1][j - 1], иначе d[i][j] = d[i + 1][j] + d[i][j - 1] + 1.
 
База рекурсии: d[i][i] = 1; если i < j, то d[i][j] = 0.


Вид ответа: d[0][n - 1]. Сложность O(N<sup>2</sup>).
Вид ответа: d[0][n - 1]. Сложность O(N<sup>2</sup>).
Строка 145: Строка 169:
Вид подзадачи: d[i][j] &mdash; соответствие префикса строки 0..(i - 1) префиксу шаблона 0..(j - 1).
Вид подзадачи: d[i][j] &mdash; соответствие префикса строки 0..(i - 1) префиксу шаблона 0..(j - 1).


Рекуррентная формула: Если j < 0 или j > i, то d[i][j] = 0. Если p[j - 1] = '?' или p[j - 1] = s[i - 1], то d[i][j] = d[i - 1][j - 1]. Если p[j - 1] = '*', то d[i][j] = or(d[k][j - 1]), где k &isin; 0..i. d[0][0] = 1; d[i][0] = 0, где i &isin; 1..n; d[0][j] = 0, где j &isin; 1..m.
Рекуррентная формула: Если p[j - 1] = '?' или p[j - 1] = s[i - 1], то d[i][j] = d[i - 1][j - 1]. Если p[j - 1] = '*', то d[i][j] = or(d[k][j - 1]), где k &isin; 0..i. d[0][0] = 1.
 
База рекурсии: d[i][0] = 0, где i &isin; 1..n; d[0][j] = 0, где j &isin; 1..m; если j < 0 или j > i, то d[i][j] = 0.  


Вид ответа: d[n][m]. Сложность O(N<sup>2</sup> &times; M).
Вид ответа: d[n][m]. Сложность O(N<sup>2</sup> &times; M).
Строка 159: Строка 185:
Вид подзадачи: d[i][j] &mdash; количество путей из клетки [0, 0] в клетку [i, j].
Вид подзадачи: d[i][j] &mdash; количество путей из клетки [0, 0] в клетку [i, j].


Рекуррентная формула: Если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = 0, иначе d[i][j] = d[i - 1][j] + d[i][j - 1]; d[0][0] = 1.
Рекуррентная формула: d[i][j] = d[i - 1][j] + d[i][j - 1].
 
База рекурсии: d[0][0] = 1; если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = 0.


Вид ответа: d[n][m]. Сложность O(N &times; M).
Вид ответа: d[n][m]. Сложность O(N &times; M).
Строка 169: Строка 197:
Вид подзадачи: d[i][j] &mdash; максимальная сумма на пути из клетки [0, 0] в клетку [i, j].
Вид подзадачи: d[i][j] &mdash; максимальная сумма на пути из клетки [0, 0] в клетку [i, j].


Рекуррентная формула: Если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = -INF, иначе d[i][j] = a[i][j] + max(d[i - 1][j], d[i][j - 1]); d[0][0] = a[0][0].
Рекуррентная формула: d[i][j] = a[i][j] + max(d[i - 1][j], d[i][j - 1]).
 
База рекурсии: d[0][0] = a[0][0]; если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = -INF.


Вид ответа: d[n][m]. Сложность O(N &times; M).
Вид ответа: d[n][m]. Сложность O(N &times; M).
Строка 183: Строка 213:
Вид подзадачи: d[i][j] &mdash; сторона максимального единичного квадрата с правым нижним углом в клетке [i, j].
Вид подзадачи: d[i][j] &mdash; сторона максимального единичного квадрата с правым нижним углом в клетке [i, j].


Рекуррентная формула: Если клетка a[i][j] = 0 (либо i < 0 или j < 0), то d[i][j] = 0, иначе d[i][j] = 1 + min(d[i - 1][j], d[i][j - 1], d[i][j - 1]); d[0][0] = a[0][0].
Рекуррентная формула: d[i][j] = 1 + min(d[i - 1][j], d[i][j - 1], d[i][j - 1]).
 
База рекурсии: d[0][0] = a[0][0]; если a[i][j] = 0 (либо i < 0 или j < 0), то d[i][j] = 0.


Вид ответа: max(d[i][j])<sup>2</sup>, где i &isin; 0..(n - 1), j &isin; 0..(m - 1). Сложность O(N &times; M).
Вид ответа: max(d[i][j])<sup>2</sup>, где i &isin; 0..(n - 1), j &isin; 0..(m - 1). Сложность O(N &times; M).


[[Категория:Учебный курс «Алгоритмы и структуры данных»]]
[[Категория:Учебный курс «Алгоритмы и структуры данных»]]

Версия от 22:58, 29 августа 2014

Одномерная динамика (вход — параметр; подзадача — меньший параметр)

Числа Фибоначчи

Найти n-ый элемент ряда Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21...

Вид подзадачи: d[i] — i-ое число Фибоначчи.

Рекуррентная формула: d[i] = d[i - 1] + d[i - 2].

База рекурсии: d[0] = d[1] = 1.

Вид ответа: d[n]. Сложность O(N). (*Данная задача может быть решена за O(logN).)

Задача о рюкзаке с повторениями

Дано N предметов, i-й из которых имеет целочисленные вес w[i] > 0 и стоимость p[i] > 0. Выбрать часть предметов так, чтобы их общий вес не превышал M, а общая стоимость была максимальна. Каждый предмет можно брать неограниченное число раз.

Вид подзадачи: d[j] — максимальная стоимость подмножества предметов, общий вес которых не превосходит j.

Рекуррентная формула: d[j] = max(d[j - w[i]] + p[i]), где i ∈ 0..(n - 1).

База рекурсии: Если j <= 0, то d[j] = 0.

Вид ответа: d[m]. Сложность O(N × M).

Одномерная динамика (вход — последовательность; подзадача — префикс)

Количество путей в полосе

Дана полоса из n клеток. Фишка находится в клетке 0 и может перемещаться на 1, 2 или 3 клетки вправо. Найти количество различных путей фишки от клетки 0 до клетки (n - 1). Некоторые клетки могут быть непроходимыми.

Вид подзадачи: d[i] — количество путей из клетки 0 в клетку i.

Рекуррентная формула: d[i] = d[i - 1] + d[i - 2] + d[i - 3].

База рекурсии: d[0] = 1; если i-я клетка непроходимая или i < 0, то d[i] = 0.

Вид ответа: d[n]. Сложность O(N).

Максимальный путь в полосе

Дана полоса из n клеток, в каждой клетке которой записано число. Фишка находится в клетке 0 и может перемещаться на 1, 2 или 3 клетки вправо. Найти максимально возможную сумму чисел на посещённых клетках при перемещении фишки от клетки 0 до клетки (n - 1). Некоторые клетки могут быть непроходимыми.

Вид подзадачи: d[i] — максимальная сумма на пути из клетки 0 в клетку i.

Рекуррентная формула: d[i] = a[i] + max(d[i - 1], d[i - 2], d[i - 3]).

База рекурсии: d[0] = a[0]; если i-я клетка непроходимая или i < 0, то d[i] = -INF.

Вид ответа: d[n]. Сложность O(N).

Одномерная динамика (вход — последовательность; подзадача — префикс + привязка)

Подотрезок с максимальной суммой

Дан целочисленный массив a[n]. Определить максимальную сумму его элементов, принадлежащих некоторому непрерывному диапазону a[i]..a[j].

Вид подзадачи: d[i] — максимальная сумма на отрезке, заканчивающимся на элементе a[i].

Рекуррентная формула: d[i] = max(d[i - 1] + a[i], a[i]).

База рекурсии: d[0] = a[0].

Вид ответа: max(d[i]), где i ∈ 0..(n - 1). Сложность O(N).

Наибольшая возрастающая подпоследовательность (LIS)

Дан целочисленный массив a[n]. Определить максимальную длину некоторой (не обязательно непрерывной) подпоследовательности его элементов, в которой каждый элемент больше предыдущего.

Вид подзадачи: d[i] — максимальная длина возрастающей подпоследовательности, заканчивающейся на элементе a[i].

Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и a[j] < a[i].

База рекурсии: d[0] = 1.

Вид ответа: max(d[i]), где i ∈ 0..(n - 1). Сложность O(N2).

Наибольшая последовательность вкладываемых параллелепипедов

Даны размеры N параллелепипедов. Определить максимальное количество параллелепипедов, которые можно последовательно вложить друг в друга (параллелепипеды можно поворачивать, но рёбра должны быть параллельными осям координат).

Вид подзадачи: Отсортируем параллелепипеды по неубыванию объёма. d[i] — максимальное количество вложенных параллелепипедов, где объемлющим является i-й параллелепипед.

Рекуррентная формула: d[i] = 1 + max(d[j]), где j = 0..(i - 1) и j-й параллелепипед можно вложить в i-й.

База рекурсии: d[0] = 1.

Вид ответа: max(d[i]), где i ∈ 0..(n - 1). Сложность O(N2).

Двумерная динамика (вход — параметр, последовательность; подзадача — меньший параметр, префикс)

Задача о рюкзаке без повторений

Дано N предметов, i-й из которых имеет целочисленные вес w[i] > 0 и стоимость p[i] > 0. Выбрать часть предметов так, чтобы их общий вес не превышал M, а общая стоимость была максимальна.

Вид подзадачи: d[i][j] — максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.

Рекуррентная формула: d[i][j] = max(d[i - 1][j], d[i - 1][j - w[i - 1]] + p[i - 1]).

База рекурсии: Если i = 0 или j <= 0, то d[i][j] = 0.

Вид ответа: d[n][m]. Сложность O(N × M).

Задача о рюкзаке с ограниченными повторениями

Дано N предметов, i-й из которых имеет целочисленные вес w[i] > 0 и стоимость p[i] > 0. Выбрать часть предметов так, чтобы их общий вес не превышал M, а общая стоимость была максимальна. i-й предмет можно брать k[i] раз.

Вид подзадачи: d[i][j] — максимальная стоимость подмножества предметов от 0-го до (i - 1)-го, общий вес которых не превосходит j.

Рекуррентная формула: d[i][j] = max(d[i - 1][j - k * w[i - 1]] + k * p[i - 1]), где k ∈ 0..k[i].

База рекурсии: Если i = 0 или j <= 0, то d[i][j] = 0.

Вид ответа: d[n][m]. Сложность O(N × M2).

Восстановление скобок

Дана строка S, состоящая из символов '(', ')' и '?'. Найти количество способов заменить знаки вопроса на скобки так, чтобы получилась правильная скобочная последовательность.

Вид подзадачи: d[i][j] — количество способов восстановить подстроку 0..(i - 1), чтобы в ней было j непарных открывающих скобок.

Рекуррентная формула: Если s[i - 1] = '(', то d[i][j] = d[i - 1][j - 1]. Если s[i - 1] = ')', то d[i][j] = d[i - 1][j + 1]. Если s[i - 1] = '?', то d[i][j] = d[i - 1][j - 1] + d[i - 1][j + 1].

База рекурсии: d[0][0] = 1; если j < 0 или j > i, то d[i][j] = 0.

Вид ответа: d[n][0]. Сложность O(N2).

Двумерная динамика (вход — последовательность; подзадача — подотрезок)

Перемножение цепочки матриц

Даны размеры h[] и w[] для N матриц, причём w[i] = h[i + 1]. Перемножение матрицы i на матрицу (i + 1) требует (h[i] × w[i] × w[i + 1]) операций. Определить минимальное количество операций, требуемое для перемножения всех матриц.

Вид подзадачи: d[i][j] — минимальное количество операций, требуемое для перемножения матриц от i до j.

Рекуррентная формула: d[i][j] = min(d[i][k] + d[k + 1][j] + h[i] * w[k] * w[j]), где k ∈ i..(j - 1).

База рекурсии: d[i][i] = 0.

Вид ответа: d[0][n - 1]. Сложность O(N3).

Число способов получить палиндром удалением символов

Дана строка S. Определить число способов удалить из S некоторое количество (возможно, ноль) символов так, чтобы результирующая строка была палиндромом.

Вид подзадачи: d[i][j] — количество способов получить палиндром из подстроки S[i..j].

Рекуррентная формула: Если s[i] != s[j], то d[i][j] = d[i + 1][j] + d[i][j - 1] - d[i + 1][j - 1], иначе d[i][j] = d[i + 1][j] + d[i][j - 1] + 1.

База рекурсии: d[i][i] = 1; если i < j, то d[i][j] = 0.

Вид ответа: d[0][n - 1]. Сложность O(N2).

Двумерная динамика (вход — две последовательности; подзадача — два префикса)

Соответствие строки шаблону

Дана строка S и шаблон P, который может включать символы '?' и '*'. Проверить соответствие строки шаблону.

Вид подзадачи: d[i][j] — соответствие префикса строки 0..(i - 1) префиксу шаблона 0..(j - 1).

Рекуррентная формула: Если p[j - 1] = '?' или p[j - 1] = s[i - 1], то d[i][j] = d[i - 1][j - 1]. Если p[j - 1] = '*', то d[i][j] = or(d[k][j - 1]), где k ∈ 0..i. d[0][0] = 1.

База рекурсии: d[i][0] = 0, где i ∈ 1..n; d[0][j] = 0, где j ∈ 1..m; если j < 0 или j > i, то d[i][j] = 0.

Вид ответа: d[n][m]. Сложность O(N2 × M).

Двумерная динамика (вход — таблица; подзадача — двумерный префикс)

Количество путей в таблице

Дана таблица n × m клеток. Фишка находится в клетке [0, 0] и может перемещаться вправо или вниз. Найти количество различных путей фишки от клетки [0, 0] до клетки [n - 1, m - 1]. Некоторые клетки могут быть непроходимыми.

Вид подзадачи: d[i][j] — количество путей из клетки [0, 0] в клетку [i, j].

Рекуррентная формула: d[i][j] = d[i - 1][j] + d[i][j - 1].

База рекурсии: d[0][0] = 1; если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = 0.

Вид ответа: d[n][m]. Сложность O(N × M).

Максимальный путь в таблице

Дана таблица n × m клеток, в каждой клетке которой записано число. Фишка находится в клетке [0, 0] и может перемещаться вправо или вниз. Найти максимально возможную сумму чисел на посещённых клетках при перемещении фишки от клетки [0, 0] до клетки [n - 1, m - 1]. Некоторые клетки могут быть непроходимыми.

Вид подзадачи: d[i][j] — максимальная сумма на пути из клетки [0, 0] в клетку [i, j].

Рекуррентная формула: d[i][j] = a[i][j] + max(d[i - 1][j], d[i][j - 1]).

База рекурсии: d[0][0] = a[0][0]; если клетка [i, j] непроходимая (либо i < 0 или j < 0), то d[i][j] = -INF.

Вид ответа: d[n][m]. Сложность O(N × M).

Двумерная динамика (вход — таблица; подзадача — двумерный префикс + привязка)

Максимальный квадрат из единиц

Дана двоичная матрица размера n × m. Определить максимальную площадь её квадратной подматрицы, состоящей только из единиц.

Вид подзадачи: d[i][j] — сторона максимального единичного квадрата с правым нижним углом в клетке [i, j].

Рекуррентная формула: d[i][j] = 1 + min(d[i - 1][j], d[i][j - 1], d[i][j - 1]).

База рекурсии: d[0][0] = a[0][0]; если a[i][j] = 0 (либо i < 0 или j < 0), то d[i][j] = 0.

Вид ответа: max(d[i][j])2, где i ∈ 0..(n - 1), j ∈ 0..(m - 1). Сложность O(N × M).