Алгоритм Форда-Фалкерсона: различия между версиями
Перейти к навигации
Перейти к поиску
Ctrlalt (обсуждение | вклад) Нет описания правки |
Ctrlalt (обсуждение | вклад) Нет описания правки |
||
(не показано 9 промежуточных версий этого же участника) | |||
Строка 1: | Строка 1: | ||
class Graph { | |||
struct Edge { | |||
int a, b, capacity, flow = 0; | |||
Edge(int a, int b, int capacity) : | |||
a(a), b(b), capacity(capacity) {} | |||
int other(int v) const { | |||
return v == a ? b : a; | |||
} | |||
int capacityTo(int v) const { | |||
return v == b ? capacity - flow : flow; | |||
} | |||
void addFlowTo(int v, int deltaFlow) { | |||
flow += (v == b ? deltaFlow : -deltaFlow); | |||
} | |||
}; | |||
vector<Edge> edges; | |||
vector<vector<int>> graph; | |||
vector<bool> visited; | |||
vector<int> edgeTo; | |||
void dfs(int v) { | |||
visited[v] = 1; | |||
for (int e : graph[v]) { | |||
int to = edges[e].other(v); | |||
if (!visited[to] && edges[e].capacityTo(to)) { | |||
edgeTo[to] = e; | |||
dfs(to); | |||
} | |||
} | |||
} | } | ||
int | |||
return | bool hasPath(int start, int finish) { | ||
visited.assign(visited.size(), 0); | |||
dfs(start); | |||
return visited[finish]; | |||
} | } | ||
int bottleneckCapacity(int start, int finish) { | |||
int bCapacity = 1e9; | |||
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) | |||
bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); | |||
return bCapacity; | |||
} | } | ||
void addFlow(int start, int finish, int deltaFlow) { | |||
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) | |||
edges[edgeTo[v]].addFlowTo(v, deltaFlow); | |||
} | } | ||
public: | |||
Graph(int vertexCount) : | |||
graph(vertexCount), visited(vertexCount), edgeTo(vertexCount) {} | |||
void addEdge(int from, int to, int capacity) { | |||
edges.push_back(Edge(from, to, capacity)); | |||
graph[from].push_back(edges.size() - 1); | |||
edges.push_back(Edge( | graph[to].push_back(edges.size() - 1); | ||
} | } | ||
int | long long maxFlow(int start, int finish) { | ||
long long flow = 0; | |||
while (hasPath(start, finish)) { | |||
int deltaFlow = bottleneckCapacity(start, finish); | |||
addFlow(start, finish, deltaFlow); | |||
flow += deltaFlow; | |||
} | |||
return flow; | |||
} | } | ||
}; | |||
} | |||
== Ссылки == | == Ссылки == | ||
* [ | Теория: | ||
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A4%D0%BE%D1%80%D0%B4%D0%B0-%D0%A4%D0%B0%D0%BB%D0%BA%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0,_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F_%D1%81_%D0%BF%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%D1%8E_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0_%D0%B2_%D0%B3%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D1%83 neerc.ifmo.ru/wiki — | * [https://algs4.cs.princeton.edu/lectures/keynote/64MaxFlow.pdf algs4.cs.princeton.edu — 6.4 Maximum Flow] | ||
* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A4%D0%BE%D1%80%D0%B4%D0%B0-%D0%A4%D0%B0%D0%BB%D0%BA%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0,_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F_%D1%81_%D0%BF%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%D1%8E_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0_%D0%B2_%D0%B3%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D1%83 neerc.ifmo.ru/wiki — Алгоритм Форда-Фалкерсона] | |||
* [http://brilliant.org/wiki/ford-fulkerson-algorithm Brilliant.org — Ford-Fulkerson Algorithm] | |||
Демонстрация: | |||
* [https://visualgo.net/en/maxflow VisuAlgo — Network Flow] | |||
Код: | |||
* [https://github.com/indy256/codelibrary/blob/master/java/graphs/flows/MaxFlowFordFulkerson.java CodeLibrary — Maximum flow. Ford-Fulkerson alogithm in O(V^2 * FLOW)] | |||
* [http://github.com/ADJA/algos/blob/master/Graphs/FordFulkerson.cpp Algos — Ford-Fulkerson maxflow] | |||
* algs4.cs.princeton.edu/code — [http://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/FlowEdge.java.html capacitated edge with flow], [http://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/FlowNetwork.java.html capacitated network], [http://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/FordFulkerson.java.html maxflow–mincut] (несмотря на название, используется алгоритм Эдмондса-Карпа) | |||
Задачи: | |||
* [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru — Курс «Алгоритмы на графах» — часть 9] | * [http://informatics.mccme.ru/course/view.php?id=6 informatics.mccme.ru — Курс «Алгоритмы на графах» — часть 9] | ||
* [ | * [[:Категория:Задачи: Максимальный поток|Задачи: Максимальный поток]] | ||
[[Category: Максимальный поток]] |
Текущая версия от 13:23, 1 июля 2023
class Graph { struct Edge { int a, b, capacity, flow = 0; Edge(int a, int b, int capacity) : a(a), b(b), capacity(capacity) {} int other(int v) const { return v == a ? b : a; } int capacityTo(int v) const { return v == b ? capacity - flow : flow; } void addFlowTo(int v, int deltaFlow) { flow += (v == b ? deltaFlow : -deltaFlow); } }; vector<Edge> edges; vector<vector<int>> graph; vector<bool> visited; vector<int> edgeTo; void dfs(int v) { visited[v] = 1; for (int e : graph[v]) { int to = edges[e].other(v); if (!visited[to] && edges[e].capacityTo(to)) { edgeTo[to] = e; dfs(to); } } } bool hasPath(int start, int finish) { visited.assign(visited.size(), 0); dfs(start); return visited[finish]; } int bottleneckCapacity(int start, int finish) { int bCapacity = 1e9; for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) bCapacity = min(bCapacity, edges[edgeTo[v]].capacityTo(v)); return bCapacity; } void addFlow(int start, int finish, int deltaFlow) { for (int v = finish; v != start; v = edges[edgeTo[v]].other(v)) edges[edgeTo[v]].addFlowTo(v, deltaFlow); } public: Graph(int vertexCount) : graph(vertexCount), visited(vertexCount), edgeTo(vertexCount) {} void addEdge(int from, int to, int capacity) { edges.push_back(Edge(from, to, capacity)); graph[from].push_back(edges.size() - 1); graph[to].push_back(edges.size() - 1); } long long maxFlow(int start, int finish) { long long flow = 0; while (hasPath(start, finish)) { int deltaFlow = bottleneckCapacity(start, finish); addFlow(start, finish, deltaFlow); flow += deltaFlow; } return flow; } };
Ссылки
Теория:
- algs4.cs.princeton.edu — 6.4 Maximum Flow
- neerc.ifmo.ru/wiki — Алгоритм Форда-Фалкерсона
- Brilliant.org — Ford-Fulkerson Algorithm
Демонстрация:
Код:
- CodeLibrary — Maximum flow. Ford-Fulkerson alogithm in O(V^2 * FLOW)
- Algos — Ford-Fulkerson maxflow
- algs4.cs.princeton.edu/code — capacitated edge with flow, capacitated network, maxflow–mincut (несмотря на название, используется алгоритм Эдмондса-Карпа)
Задачи: