Алгоритм Форда-Фалкерсона
Перейти к навигации
Перейти к поиску
class Graph {
struct Edge {
int a, b, capacity, flow = 0;
Edge(int a, int b, int capacity) :
a(a), b(b), capacity(capacity) {}
int other(int v) const {
return v == b ? a : b;
}
int capacityTo(int v) const {
return v == b ? capacity - flow : flow;
}
void addFlowTo(int v, int deltaFlow) {
flow += (v == b ? deltaFlow : -deltaFlow);
}
};
vector<Edge> edges;
vector<vector<int>> graph;
vector<int> visited, edgeTo;
void dfs(int v) {
visited[v] = 1;
for (int edgeIndex : graph[v]) {
int to = edges[edgeIndex].other(v);
if (!visited[to] && edges[edgeIndex].capacityTo(to)) {
edgeTo[to] = edgeIndex;
dfs(to);
}
}
}
bool hasPath(int start, int finish) {
visited.assign(graph.size(), 0);
edgeTo.assign(graph.size(), -1);
dfs(start);
return visited[finish];
}
int getMinCapacity(int start, int finish) {
int minCapacity = 1e9;
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v))
minCapacity = min(minCapacity, edges[edgeTo[v]].capacityTo(v));
return minCapacity;
}
void addFlow(int start, int finish, int deltaFlow) {
for (int v = finish; v != start; v = edges[edgeTo[v]].other(v))
edges[edgeTo[v]].addFlowTo(v, deltaFlow);
}
public:
Graph(int vertexCount) : graph(vertexCount) {}
void addEdge(int from, int to, int capacity) {
edges.push_back(Edge(from, to, capacity));
graph[from].push_back(edges.size() - 1);
graph[to].push_back(edges.size() - 1);
}
long long maxFlow(int start, int finish) {
long long flow = 0;
while (hasPath(start, finish)) {
int deltaFlow = getMinCapacity(start, finish);
addFlow(start, finish, deltaFlow);
flow += deltaFlow;
}
return flow;
}
};
Ссылки
Теория:
- algs4.cs.princeton.edu — 6.4 Maximum Flow
- neerc.ifmo.ru/wiki — Алгоритм Форда-Фалкерсона
- Brilliant.org — Ford-Fulkerson Algorithm
- codeforces.com — Worst-Case Graphs for Maximum Flow Algorithms
Демонстрация:
Код:
- CodeLibrary — Maximum flow. Ford-Fulkerson alogithm in O(V^2 * FLOW)
- Algos — Ford-Fulkerson maxflow
- algs4.cs.princeton.edu/code — capacitated edge with flow, capacitated network, maxflow–mincut (несмотря на название, используется алгоритм Эдмондса-Карпа)
Задачи: