Метод двоичного подъёма
Перейти к навигации
Перейти к поиску
struct Graph { vector<vector<int>> graph, ancestor; vector<int> l, r, depth; int timer = 0; Graph(int vertexCount) : graph(vertexCount), ancestor(vertexCount, vector<int>(20)), l(vertexCount), r(vertexCount), depth(vertexCount) {} void addEdge(int a, int b) { graph[a].push_back(b); graph[b].push_back(a); } void dfs(int v, int parent) { depth[v] = (v == parent ? 0 : depth[parent] + 1); l[v] = timer++; ancestor[v][0] = parent; for (int i = 1; i < ancestor[v].size(); i++) ancestor[v][i] = ancestor[ancestor[v][i - 1]][i - 1]; for (int to : graph[v]) if (to != parent) dfs(to, v); r[v] = timer++; } void prepare(int root) { dfs(root, root); } bool isAncestor(int a, int b) { return l[a] <= l[b] && r[b] <= r[a]; } int lca(int a, int b) { if (isAncestor(a, b)) return a; if (isAncestor(b, a)) return b; for (int i = ancestor[a].size() - 1; i >= 0; i--) if (!isAncestor(ancestor[a][i], b)) a = ancestor[a][i]; return ancestor[a][0]; } int distance(int a, int b) { int l = lca(a, b); int da = depth[a] - depth[l]; int db = depth[b] - depth[l]; return da + db; } };
Ссылки
- e-maxx.ru — Наименьший общий предок. Нахождение за O(log N) (метод двоичного подъёма)
- neerc.ifmo.ru/wiki — Метод двоичного подъёма
- algorithmica.org — Корневые деревья
- usaco.guide — Euler Tour Technique
- usaco.guide — Binary Jumping
- indy256/codelibrary/java/graphs/lca/LcaSparseTable.java (несмотря на название, приведён код метода двоичного подъёма)
- ADJA/algos/Graphs/LCABinary.cpp